
JENKINS CODE SIGNING
Integration Guide

Applicable Devices:
KMES Series 3

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION PROPRIETARY TO FUTUREX, LP. ANY UNAUTHORIZED USE, DISCLOSURE, OR
DUPLICATION OF THIS DOCUMENT OR ANY OF ITS CONTENTS IS EXPRESSLY PROHIBITED.

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 2 of 30

TABLE OF CONTENTS

[1] OVERVIEW 3

[1.1] WHAT IS A JENKINS PLUGIN (IN OUR OWN WORDS)? 3

[1.2] WHAT IS THE PURPOSE OF THE FXCL JENKINS PLUGIN? 3

[2] PREREQUISITES 4

[2.1] KMES-SPECIFIC PREREQUISITES 4

[2.2] JENKINS-SPECIFIC PREREQUISITES 4

[3] KMES SERIES 3 CONFIGURATION 5

[3.1] CONFIGURE TLS COMMUNICATION BETWEEN THE KMES SERIES 3 AND THE JENKINS INSTANCE 5

[3.2] GENERAL KMES CONFIGURATIONS FOR COMMUNICATION BETWEEN JENKINS AND THE KMES SERIES 3 10

[4] JENKINS DOWNLOAD, CONFIGURATION, AND FXCL JENKINS PLUGIN TESTING 13

[4.1] DOWNLOADING, RUNNING, AND PERFORMING THE INITIAL JENKINS SETUP 13

[4.2] INSTALLING THE FXCL JENKINS PLUGIN 13

[4.3] REGISTER CERTIFICATE CREDENTIALS FOR TLS COMMUNICATION BETWEEN JENKINS AND THE KMES SERIES 3 15

[4.4] REGISTER USERNAME WITH PASSWORD CREDENTIALS 16

[4.5] SIGNING A FILE IN A FREESTYLE PROJECT USING THE KMES SERIES 3 REGISTRATION AUTHORITY 18

[4.6] USING THE FXCL JENKINS PLUGIN SYNTAX GENERATOR 26

APPENDIX A: XCEPTIONAL SUPPORT 29

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 3 of 30

[1] OVERVIEW
This section will answer the following two questions:

l What is a Jenkins plugin (in our own words)?

l What is the purpose of the FXCL Jenkins Plugin?

[1.1] WHAT IS A JENKINS PLUGIN (IN OUR OWNWORDS)?
A plugin implements one or more build steps for consumption by a pipeline or project. By convention, though, a
plugin generally implements only one build step for the purpose of separation.

A pipeline is essentially a set of configurable build-steps. This terminology generally refers to the "Pipeline"
plugin in general.

A build step is the fundamental building block of build automation in Jenkins. Everything that does an action in
your project is a "build step". Everything from pulling from git to notifying users that a build is complete is a
build step.

In relation, a stage is a logical grouping of those build steps. For example, you can "skip the Test stage", whereas
otherwise, you'd need to specify individual build steps to skip over. It can also help visualize progress for
consumers of the build results. Stages are not a required part of a pipeline and are strictly logical, meaning that
it's not necessary to worry about stages other than understanding what a stage is.

Pipeline scripting comes in two forms:

l Declarative - A pre-defined set of tasks and environments to run build steps and/or Groovy expressions in.

l Imperative (or Scripted) - Similar to the declarative version but with some limitations because of the lack
of a declarative environment. In exchange, you obtain the full power of Groovy. It's very powerful, but
difficult to use.

[1.2] WHAT IS THE PURPOSE OF THE FXCL JENKINS PLUGIN?
The problem with the existing Jenkins code signing plugins is that they have no notion of an "approval" process.
The resulting signature must be given immediately, or failure occurs. When a request to sign is submitted, it will
fail because there is no time for approval to occur. There's also no way to query for the same request using
something like Jarsigner, which relies on PKCS11. Thus, the need for a plugin that handles the approval process
arises.

The FXCL Jenkins Plugin accomplishes the following:

l By interfacing with the KMES Series 3 registration authority, it allows for the standard approval process to
take place.

l By incorporating Futurex Client Library (FXCL) functionality into the plugin, it makes it possible to sign files
in bulk.

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 4 of 30

[2] PREREQUISITES
Before deploying code signing capabilities, a range of prerequisites must be met on the KMES Series 3 and on
the computer that will be running the Jenkins instance.

[2.1] KMES-SPECIFIC PREREQUISITES
l Initial setup and configuration of the KMES Series 3, including loading a Platform Master Key and network

setup.
l Host API port (2001 by default) unblocked on any firewalls the KMES Series 3 is behind.

[2.2] JENKINS-SPECIFIC PREREQUISITES
l In this integration guide we'll be using the Web application ARchive (WAR) file version of Jenkins. It can be

installed on any operating system or platform that runs a version of Java supported by Jenkins. See the
Java Requirements page on the jenkins.io website for details.

l The FXCL Jenkins Plugin file needs to be downloaded from the Futurex Portal to the computer that will be
running the Jenkins instance.

l Minimum hardware requirements:
o 256 MB of RAM
o 1 GB of drive space

Please refer to Hardware Recommendations page on the jenkins.io website for a comprehensive list of
hardware recommendations.

l Software requirements:
o Java: see the Java Requirements page on the jenkins.io website
o Web browser: see the Web Browser Compatibility page on the jenkins.io website
o For Windows operating system: Windows Support Policy

https://www.jenkins.io/doc/administration/requirements/java/
https://www.jenkins.io/doc/book/scaling/hardware-recommendations/
https://www.jenkins.io/doc/administration/requirements/java
https://www.jenkins.io/doc/administration/requirements/web-browsers
https://www.jenkins.io/doc/administration/requirements/windows

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 5 of 30

[3] KMES SERIES 3 CONFIGURATION
The first half of this section covers the steps needed to configure TLS communication between the KMES Series
3 and the Jenkins instance. The second half of this section covers general KMES configurations that must be
made for the KMES to provide Jenkins code signing functionality.

[3.1] CONFIGURE TLS COMMUNICATION BETWEEN THE KMES SERIES 3 AND THE JENKINS
INSTANCE

[3.1.1] Create a Certificate Authority (CA)

1. Log in to the KMES Series 3 application interface with the default Admin identities.

2. Select PKI > Certificate Authorities in the left menu, then click the [Add CA...] button at the bottom of the
page.

3. In the Certificate Authority dialog, enter a name for the Certificate Container, leave all other fields as the
default values, then click [OK].

4. The Certificate Container that was just created will be listed now in the Certificate Authorities menu.

5. Right-click on the Certificate Container and select Add Certificate > New Certificate...

6. In the Subject DN tab, set a Common Name for the certificate, such as "System TLS CA Root".

7. In the Basic Info tab, leave the default settings.

8. In the V3 Extensions tab, select the Certificate Authority profile, then click [OK].

9. The root CA certificate will be listed now under the previously created Certificate Container.

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 6 of 30

[3.1.2] Generate a CSR for the System/Host API connection pair

1. Go to Administration > Configuration > Network Options.

2. In the Network Options dialog, select the TLS/SSL Settings tab.

3. Under the System/Host API connection pair, uncheck Use Futurex certificates, then click the [Edit...]
button next to PKI keys in the User Certificates section.

4. In the Application Public Keys dialog, click [Generate...].

5. There will be a warning stating that SSL will not be functional until new certificates are imported. Select [
Yes] if you wish to continue.

6. In the PKI Parameters dialog, leave the default settings and select [OK].

7. It should show that a PKI Key Pair is loaded now in the Application Public Keys dialog. If this is the case,
click [Request...].

8. In the Subject DN tab, you can leave the default System/Host API value set in the Common Name field, or
you can change it to a different value.

9. In the V3 Extensions tab, select the TLS Server Certificate profile.

10. In the PKCS #10 Info tab, select a save location for the CSR, then click [OK].

11. There should be a message stating that the certificate signing request was successfully written to the file
location that was selected. Click [OK].

12. Click [OK] again to save the Application Public Keys settings.

13. In the main Network Options dialog, it should now say Loaded next to PKI keys.

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 7 of 30

[3.1.3] Sign the System/Host API CSR

1. Go to the PKI > Certificate Authorities menu.

2. Right-click on the root CA certificate created in section 3.1.1, then select Add Certificate > From Request...

3. In the file browser, find and select the CSR that was generated for the System/Host API connection pair.

4. Once loaded, none of the settings need to be modified for the certificate. Click [OK].

5. The signed System/Host API certificate should now show under the root CA certificate on the Certificate
Authorities page.

[3.1.4] Export the root CA and signed System/Host API certificates

1. Right-click on the root CA certificate, then select Export > Certificate(s)...

2. Change the encoding to PEM. Then click [Browse...] and specify a save location and name for the export
file.

3. There should be a message stating that the file was successfully written to the location that was selected.
Click [OK].

4. Right-click on the signed System/Host API certificate, then select Export > Certificate(s)...

5. Change the encoding to PEM. Then click [Browse...] and select a save location and name for the export
file.

6. There should be a message stating that the file was successfully written to the location that was selected.
Click [OK].

[3.1.5] Load the exported certificates into the System/Host API connection pair

1. Go to Administration > Configuration > Network Options.

2. In the Network Options dialog, select the TLS/SSL Settings tab.

3. Click [Edit...] next to Certificates in the User Certificates section.

4. Right-click on the System/Host API SSL CA X.509 Certificate Container, then select Import...

5. Click the [Add...] button at the bottom of the Import Certificates dialog.

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 8 of 30

6. In the file browser, find and select both the root CA certificate and the signed System/Host API certificate,
then click [Open]. The certificate chain should appear as shown below:

7. Click [OK] to save the changes. In the Network Options dialog, the System/Host API connection pair
should show Signed loaded next to Certificates in the User Certificates section, as shown below:

8. Click [OK] to save and exit the Network Options dialog.

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 9 of 30

[3.1.6] Generate a signed certificate for the Jenkins instance

1. Go to the PKI > Certificate Authorities menu.

2. Right-click on the root CA certificate and select Add Certificate > New Certificate...

3. In the Subject DN tab, set a Common Name for the certificate, such as "Jenkins".

4. All settings in the Basic Info tab can be left as the default values.

5. In the V3 Extensions tab, select the TLS Client Certificate profile, then click [OK].

6. The signed Jenkins certificate will be listed now under the root CA certificate.

[3.1.7] Allow export of certificates using passwords

1. Navigate to Administration > Configuration > Options.

2. Check the box next to the second menu option, which says, "Allow export of certificates using
passwords".

3. Click [Save].

[3.1.8] Export the signed Jenkins certificate as a PKCS #12 file

1. Go to the PKI > Certificate Authorities menu.

2. Right-click on the signed Jenkins certificate, then select Export > PKCS12...

3. Select the [Set Password] button and enter a password for the PKCS #12 file, then click [Save].

4. In the Export Certificate dialog, select Export Selected Certificate with Parents under Export Options, then
click [Next].

5. Specify a name for the PKCS #12 export file and click [Open].

6. A message should appear stating the PKCS#12 certificate export was successful.

Note: This PKCS #12 file needs to be moved to the computer running the Jenkins instance. In a later section, it
will be imported in Jenkins and used for TLS communication with the KMES Series 3.

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 10 of 30

[3.2] GENERAL KMES CONFIGURATIONS FOR COMMUNICATION BETWEEN JENKINS AND THE
KMES SERIES 3

[3.2.1] Enable the required Host API commands

1. Go to Administration > Configuration > Host API Options.

2. Enable the following commands:

l RAFA - Enumerate issuance policies

l RAGA - Retrieve issuance policy details

l RAGZ - Retrieve Request (Authenticode)

l RAUZ - Upload Request (Authenticode)

l RAGJ - Retrieve Request (JAR)

l RAUJ - Upload Request (JAR)

l RKLO - Login User

l RAGO - Retrieve Request (Hash Signing)

l RAUO - Upload Request (Hash Signing)

3. Click [Save].

[3.2.2] Create a Jenkins Role with the required permissions

1. Go to Identity Management > Roles, in the left menu, then click the [Add...] button at the bottom of the
page.

2. Specify a name for the group, such as "Jenkins", then ensure that the settings below are selected.

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 11 of 30

3. In the Permissions tab, ensure that only the following Certificate Authority permissions are selected:

4. In the Advanced tab, ensure only Host API is selected for Allowed Ports.

5. Click [OK] to save.

[3.2.3] Create a Jenkins Identity with the correct assigned Roles

1. Navigate to the Identity Management > Identities menu, then right-click and select Add > Client
Application.

2. In the Info tab, select Application for the Storage type and specify a name for the identity.

3. In the Assigned Roles tab, select the role you created in the previous section.

4. In the Authentication tab, remove the API Key mechanism, then add the password mechanism and set
your password.

5. Click [OK] to finish creating the identity.

[3.2.4] Create a Signing Approval Group and give the Jenkins Role permissions to use it

1. Navigate to the PKI > Signing Workflow menu, then click the [Add Approval Group...] button at the
bottom of the page.

2. Set a name for the Approval Group, such as "Jenkins", then click [OK] to save.

3. Right-click on the Jenkins Approval Group add select Permission...

4. Select the Show all roles and permissions checkbox, then grant the Jenkins role the Use permission and
select [OK].

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 12 of 30

[3.2.5] Create a Jenkins code signing certificate

1. Navigate to the PKI > Certificate Authorities menu, then click the [Add CA...] button at the bottom of the
page.

2. In the Certificate Authority dialog, enter a name for the Certificate Container, such as "Jenkins Code
Signing CA". Set the owner of the CA to the Jenkins role, then click [OK].

3. The Certificate Container that was just created will be listed now in the Certificate Authorities menu.

4. Right-click on the Jenkins Certificate Container and select Add Certificate > New Certificate...

5. In the Subject DN tab, set a Common Name for the certificate, such as "Root".

6. In the Basic Info tab, leave the default settings.

7. In the V3 Extensions tab, select the Code Signing Certificate profile, then click [OK].

8. The Root Jenkins code signing certificate will be listed now under the Jenkins Certificate Container.

[3.2.6] Apply an Issuance Policy to the Jenkins code signing certificate

1. Go to the PKI > Certificate Authorities menu.

2. Right-click on the root certificate within the Jenkins Certificate Container, then select Issuance Policy >
Add...

3. Under the Basic Info tab:

l Specify an Alias if desired.

l Set Approvals to 1 (Note: Setting Approvals to 0 will allow anonymous signing.)

l Select any hashes that you wish to allow.

4. In the X.509 tab, set the Default approval group to Jenkins.

5. In the Object Signing tab, select the Allow object signing checkbox.

6. Click [OK] to apply the Issuance Policy to the Root Jenkins code signing certificate.

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 13 of 30

[4] JENKINS DOWNLOAD, CONFIGURATION, AND FXCL JENKINS PLUGIN TESTING
This section will cover the steps needed to download, run, and configure Jenkins so that the KMES Series 3 can
be leveraged for code signing.

[4.1] DOWNLOADING, RUNNING, AND PERFORMING THE INITIAL JENKINS SETUP
Download the jenkins.war file from https://www.jenkins.io/download/. Then follow the instructions for running
the WAR file and completing the post-installation setup at the following
url:https://www.jenkins.io/doc/book/installing/war-file/.

[4.2] INSTALLING THE FXCL JENKINS PLUGIN
1. From the main Jenkins dashboard page, click the Manage Jenkins icon in the left-hand menu.

2. Click the Manage Plugins button in System Configuration section.

https://www.jenkins.io/download/
https://www.jenkins.io/doc/book/installing/war-file/

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 14 of 30

3. On the Plugin Manager page, click the Advanced tab.

4. Scroll down to the Upload Plugin section and click the Choose File button. In the file browser, find and
select the FXCL Jenkins Plugin file, then click Upload.

After clicking upload you will be redirected to the Update Center page where you can see the progress of the
plugin installation. If the installation is successful the status of the FXCL Jenkins Plugin will change to "Success",
as shown below:

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 15 of 30

[4.3] REGISTER CERTIFICATE CREDENTIALS FOR TLS COMMUNICATION BETWEEN JENKINS AND
THE KMES SERIES 3
In this section, the PKCS #12 file exported from the KMES in the "KMES Series 3 Configuration" section will be
imported into Jenkins to be used for TLS communication. This PKCS #12 file contains the signed Jenkins
certificate and the root (and intermediate certificate/s if applicable) certificate used to sign it, protected by a
password.

1. On the Manage Jenkins page, click the Manage Credentials button in the Security section.

2. Select the Jenkins Store, contained within the global domain.

3. Select the Global credentials (unrestricted) Domain.

4. Click the Add Credentials button in the left-hand menu.

5. Change the value in the Kind dropdown to Certificate.

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 16 of 30

6. Select the Upload PKCS#12 certificate radio button, then click Choose File. This will open the file browser.
Find and select the .p12 file, then click Open. A message should appear that says, "Could retrieve key
"system tls ca root". You may need to provide a password.

7. Click the Change Password button and enter the password of the PKCS #12 file.

8. Click the OK button to save the new credentials. They will now be listed on the following page:

[4.4] REGISTER USERNAMEWITH PASSWORD CREDENTIALS
In this section, username with password credentials will be configured in Jenkins for the "Jenkins" user that was
created on the KMES in the "KMES Series 3 Configuration" section.

1. On the Manage Jenkins page, click the Manage Credentials button in the Security section.

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 17 of 30

2. Select the Jenkins Store, contained within the global domain.

3. Select the Global credentials (unrestricted) Domain.

4. Click the Add Credentials button in the left-hand menu.

5. Leave the value in the Kind dropdown to the default value (i.e., Username with password).

6. In the Username and Password fields, specify the user name and password of the "Jenkins" user that was
created on the KMES in the "KMES Series 3 Configuration" section.

7. Click the OK button to save the new credentials.

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 18 of 30

[4.5] SIGNING A FILE IN A FREESTYLE PROJECT USING THE KMES SERIES 3 REGISTRATION
AUTHORITY
This section will walk through creating, configuring, and running a new Freestyle project. If you want to use the
KMES Series 3 registration authority to sign code in an existing Freestyle project, skip to step 6 in the next
subsection.

[4.5.1] Creating and configuring a Freestyle project to leverage the KMES for code signing using the
FXCL Jenkins Plugin

1. From the main Jenkins dashboard page, click the New Item icon in the left-hand menu.

2. Select Freestyle project, enter a name for the project, then click the OK button.

This will bring up the configuration page for the Freestyle project.

3. Scroll down to the Build section, click the Add build step button, and select Sign file via Futurex Code
Signing in the dropdown. This option is provided by the FXCL Jenkins Plugin. The following box will appear:

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 19 of 30

4. In the Method of Signature field, leave the default value (i.e., Code Sign).
NOTE: There are currently two types of signatures: Code Sign and External Signature. Code Sign will try to
use knowledge of the file format to embed a signature. If it does not understand the file format, it will fail.
An external signature does not need to know the file format, but it cannot embed signatures.

5. In the KMES Host field, enter the KMES host to connect to. The port number is optional. It will default to
port 2001, the System/Host API port, which is the port that we want to connect to.

6. In the Issuance Policy field, enter the UUID of the issuance policy to handle the signing request. To get this
information, log in to the KMES application interface, then navigate to the Certificate Authoritiesmenu.
Right-click on the Root Jenkins code signing certificate that is under the Jenkins Certificate Container, then
select Issuance Policy -> Edit. Note down the UUID that is in the first field of the Basic Info tab, as seen
below:

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 20 of 30

Back in the Jenkins GUI, enter the UUID in the Issuance Policy field.

7. In the Hash Algorithm field, select the hash algorithm to use when requesting signatures.
NOTE: The hash algorithm that you select must be one of the allowed hashes that you configured for the
Issuance Policy attached to the Root Jenkins code signing certificate under the Jenkins Certificate
Container.

8. In the Poll Interval field, specify the amount of time in seconds that you want the FXCL Jenkins plugin to
wait between code signing status requests that it sends to the KMES.

9. In the TLS PKI field, click the dropdown and select the TLS PKI that was imported as a PKCS #12 file in a
previous section.

10. In the Credentials field, select the username with password credentials configured in section 4.4.

11. In the Files to sign field, click the Add button. Then, in the File(s) field, enter "*.exe".
NOTE: Multiple files can be added, and the asterisk (*) regular expression is supported as well. For
example, you could configure it as shown below if you want all .exe and .dll files in the project to be
signed.

12. Click the Save button at the bottom of the page. This will take you back to the main page for the Freestyle
project.

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 21 of 30

[4.5.2] Testing a KMES code signing by running the Freestyle project

NOTE: Before proceeding with the steps in this section, copy any .exe file to the root directory of the Freestyle
project (it can be any legitimate .exe file). If you do not complete this step, the build will fail because the KMES
will not have any files to sign.

1. From the Freestyle project's main page, click Build Now in the left-hand menu.

2. From the main page for the build that was just initiated, click Console Output in the left-hand menu.

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 22 of 30

3. You should see something similar to the following in the console output:

The last line in the output says, "Waiting on sign request 646425A0D1E3CF1C". This means that there
were no errors on the Jenkins side, and the signing request was submitted successfully.

4. We need to log back in to the KMES now to approve the signing request. Once logged in, navigate to the
Signing Approval menu. There you should see something similar to the following:

5. Right-click on the signable object that's under the Approval Group you created, then select Approve...

6. A box should pop up, showing that the signing request was approved:

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 23 of 30

7. Click OK and you'll see that the signing request now has a green checkmark beside it.

8. Return to the Jenkins GUI. After the FXCL Jenkins Plugin has polled the KMES again for the status of the
signing request, it should complete the code signing process and finish with a "SUCCESS" message, as
shown below:

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 24 of 30

[4.5.3] Confirming that the .exe file is signed

NOTE: The following example is in Windows 10. The process for confirming whether a file is signed will vary
depending on which operating system you are using.

1. Navigate back to the main page for the Freestyle project, then click on the Workspace folder.

2. Click the (all files in zip) button in the center of the page to download a zip of all files in the workspace.

3. In your file manager, navigate to where you downloaded the zip file to, then extract it.

4. Navigate into the folder that was extracted, right-click on the .exe file that was signed, and select
Properties.

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 25 of 30

5. In the Properties dialog, navigate to the Digital Signatures tab. There you can see the name of the
certificate that signed the file. To retrieve more details you can select the signature, then click the Details
button and you will be able to view information such as the validity dates of the certificate that signed the
file, the signature hash algorithm that was used, etc.

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 26 of 30

[4.6] USING THE FXCL JENKINS PLUGIN SYNTAX GENERATOR
There is another type of project in Jenkins calls a "Pipeline" project. Essentially, it is a scriptable version of a
project. Jenkins describes a Pipeline project this way: "Orchestrates long-running activities that can span
multiple build agents. Suitable for building pipelines (formerly known as workflows) and/or organizing complex
activities that do not easily fit in free-style job type."

Another feature of the FXCL Jenkins Plugin is a syntax generator. It is intended to be used within the context of
Pipeline projects. It makes it simple and easy to generate a script for automating code signing, which can be
added to existing Pipeline scripting code.

The following steps walk through a basic tutorial of how to use the FXCL Jenkins Plugin syntax generator:

1. From the main Jenkins dashboard, click on an existing Pipeline project.

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 27 of 30

2. On the Pipeline project's main page, click on Pipeline Syntax in the left-hand menu.

3. In the Steps section, click on the Sample Step dropdown and select kmesCodeSign: Sign file via
registration authority.

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 28 of 30

4. The fields that need to be filled in our identical to the fields that were filled in for signing files via
registration authority in the Freestyle project example. Once you've filled in every field, click the Generate
Pipeline Script button. This will generate the syntax needed to script code signing within your Pipeline
project, as shown below:

5. Then, simply copy and paste the syntax that was generated into an existing Pipeline script to automate
code signing within your project.

INTEGRATION GUIDE| JENKINS CODE SIGNING

Page 29 of 30

APPENDIX A: XCEPTIONAL SUPPORT

In today’s high-paced environment, we know you are looking for timely and effective resolutions for your
mission-critical needs. That is why our Xceptional Support Team does whatever it takes to ensure you have the
best experience and support possible. Every time. Guaranteed.

l 24x7x365 mission critical support
l Level 1 to level 3 support
l Extremely knowledgeable subject matter experts

At Futurex, we strive to supply you with the latest data encryption innovations as well as our best-in-class
support services. Our Xceptional Support Team goes above and beyond to meet your needs and provide you
with exclusive services that you cannot find anywhere else in the industry.

l Technical Services
l Onsite Training
l Virtual Training
l Customized Consulting
l Customized Software Solutions
l Secure Key Generation, Printing, and Mailing
l Remote Key Injection
l Certificate Authority Services

Toll-Free: 1-800-251-5112

E-mail: support@futurex.com

mailto:support@futurex.com

ENGINEERING CAMPUS

864 Old Boerne Road

Bulverde, Texas, USA 78163

Phone: +1 830-980-9782

+1 830-438-8782

E-mail: info@futurex.com

XCEPTIONAL SUPPORT

24x7x365

Toll-Free: 1-800-251-5112

E-mail: support@futurex.com

SOLUTIONS ARCHITECT

E-mail: solutions@futurex.com

mailto:info@futurex.com
mailto:support@futurex.com
mailto:solutions@futurex.com

	[1] Overview
	[1.1] What is a Jenkins plugin (in our own words)?
	[1.2] What is the purpose of the FXCL Jenkins Plugin?

	[2] Prerequisites
	[2.1] KMES-Specific Prerequisites
	[2.2] Jenkins-specific prerequisites

	[3] KMES Series 3 configuration
	[3.1] Configure TLS communication between the KMES Series 3 and the Jenkins instance
	[3.2] General KMES Configurations for communication between Jenkins and the KMES Series 3

	[4] Jenkins Download, Configuration, and FXCL Jenkins plugin testing
	[4.1] Downloading, running, and performing the initial Jenkins setup
	[4.2] Installing the FXCL Jenkins Plugin
	[4.3] Register certificate credentials for TLS communication between Jenkins and the KMES Series 3
	[4.4] Register username with password credentials
	[4.5] Signing a file in a Freestyle project using the KMES Series 3 registration authority
	[4.6] Using the FXCL Jenkins Plugin syntax generator

	APPENDIX A: XCEPTIONAL SUPPORT

