
HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD
EXPORT
Integration Guide

Applicable Devices:
KMES Series 3

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION PROPRIETARY TO FUTUREX, LP. ANY UNAUTHORIZED USE, DISCLOSURE, OR
DUPLICATION OF THIS DOCUMENT OR ANY OF ITS CONTENTS IS EXPRESSLY PROHIBITED.

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 2 of 39

TABLE OF CONTENTS

[1] OVERVIEW OF THE HASHICORP VAULT / KMES SERIES 3 SECRET EXPORT INTEGRATION 3

[1.1] ABOUT HASHICORP VAULT 3

[1.2] PURPOSE OF THE INTEGRATION 3

[2] PREREQUISITES 4

[3] VAULT SETUP AND CONFIGURATION 5

[3.1] DOWNLOAD AND INSTALL VAULT 5

[3.2] CONFIGURE VAULT 5

[3.3] START THE DEV SERVER 7

[3.4] ACCESSING THE VAULT UI 9

[3.5] MODIFY THE DEFAULT ACL POLICY 10

[4] SETTING UP AUTHENTICATION BETWEEN THE KMES SERIES 3 AND VAULT 11

[4.1] USERPASS AUTH METHOD 11

[4.2] TLS CERTIFICATES AUTH METHOD 17

[5] OFFLOADING RANDOMLY GENERATED PKCS #12 PASSPHRASES TO VAULT 27

[5.1] REQUIRED SETUP ON THE KMES SERIES 3 27

[5.2] EXAMPLE - EXCRYPT COMMAND RAUP 27

[5.3] EXAMPLE - POST REQUEST TO THE KMES RESTFUL API USING POSTMAN 30

APPENDIX A: XCEPTIONAL SUPPORT 38

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 3 of 39

[1] OVERVIEW OF THE HASHICORP VAULT / KMES SERIES 3 SECRET EXPORT
INTEGRATION

[1.1] ABOUT HASHICORP VAULT
From HashiCorp's online documentation (https://www.vaultproject.io/docs/what-is-vault): "Vault is a tool for
securely accessing secrets. A secret is anything that you want to tightly control access to, such as API keys,
passwords, or certificates. Vault provides a unified interface to any secret, while providing tight access control
and recording a detailed audit log.

A modern system requires access to a multitude of secrets: database credentials, API keys for external services,
credentials for service-oriented architecture communication, etc. Understanding who is accessing what secrets
is already very difficult and platform-specific. Adding on key rolling, secure storage, and detailed audit logs is
almost impossible without a custom solution. This is where Vault steps in."

[1.2] PURPOSE OF THE INTEGRATION
This integration gives users the ability to store PKCS #12 passphrases in HashiCorp Vault automatically after they
are generated on the KMES Series 3. The intention is to rid DevOps and developers from the hassles of creating
secrets and populating them into Vault in a secure manner when requesting X.509 certificates and key pairs.

https://www.vaultproject.io/docs/what-is-vault

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 4 of 39

[2] PREREQUISITES
Supported Hardware:

l KMES Series 3, version 6.1.3.11 and above, with the External Secret Storage license enabled

Other:

l HashiCorp Vault application

l OpenSSL

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 5 of 39

[3] VAULT SETUP AND CONFIGURATION

[3.1] DOWNLOAD AND INSTALL VAULT
Please refer to HashiCorp's Vault documentation at the following link for instructions on how to download and
install the Vault application: https://www.vaultproject.io/docs/install

NOTE: The second installation option at the link above is using a precompiled binary. These binaries can be
downloaded at the following url: https://www.vaultproject.io/downloads

To verify Vault is properly installed, run vault -h on your system. You should see help output. If you are
executing it from the command line, make sure it is on your PATH or you may get an error about Vault not being
found.

$ vault -h

[3.2] CONFIGURE VAULT
Vault uses documented sane defaults so only non-default values must be set in the configuration file.

Create /etc/vault.d directory.

$ sudo mkdir --parents /etc/vault.d

Create a Vault configuration file, vault.hcl.

$ sudo touch /etc/vault.d/vault.hcl

Create a unique, non-privileged system user to run Vault.

$ sudo useradd --system --home /etc/vault.d --shell /bin/false vault

Set the ownership of the /etc/vault.d directory.

$ sudo chown --recursive vault:vault /etc/vault.d

Set the file permissions.

$ sudo chmod 640 /etc/vault.d/vault.hcl

Configure tcp Listeners in the Vault configuration file

The TCP listener configures Vault to listen on a TCP address/port, as shown in the example below.

listener "tcp" {
address = "127.0.0.1:8200"

}

The listener stanza may be specified more than once to make Vault listen on multiple interfaces. If you configure
multiple listeners you also need to specify api_addr and cluster_addr so Vault will advertise the correct address
to other nodes.

The vault.hcl configuration file used for demonstration in this guide is shown below. It shows Vault listening on a
private interface, as well as localhost.

https://www.vaultproject.io/docs/install
https://www.vaultproject.io/downloads

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 6 of 39

NOTE: The values defined in the vault.hcl file need to be customized for each specific use case (i.e., IPs and
ports; file paths to certificates).

NOTE: In this integration guide, the Vault server will be run in "Dev" mode. When deploying Vault in a
production setting there are more things to consider (i.e., the storage backend), but the concept of configuring
tcp listeners, as described below, still applies in that case. Please refer to Vault's documentation for specifics on
how to deploy Vault in a production environment (https://learn.hashicorp.com/tutorials/vault/getting-started-
deploy).

Configure the storage backend for Vault
storage "file" {

path = "/tmp/vault"
}

Address and port on which Vault will respond to requests from the KMES Series 3
listener "tcp" {

address = "10.0.5.118:8210"
tls_disable = false
tls_cert_file = "/home/bbarrows/Documents/Vault/client-cert.pem"
tls_key_file = "/home/bbarrows/Documents/Vault/client-privatekey.pem"

}

Advertise the non-loopback interface
api_addr = "https://10.0.5.118:8210"

Enable the Vault web UI
ui = true

Lock process memory pages, preventing them from being swapped to disk
disable_mlock = true

Please reference the comments before each block. They explain what each of the defines is doing.

The most critical information to note is that 10.0.5.118 is the IP of the machine that Vault is installed on, and
8210 is the port on which Vault will listen for requests from the KMES Series 3.

An in-depth explanation of how to set up the client TLS certificates is beyond this course's scope, but there is
one crucial thing to note concerning this: The client certificate's common name must match the IP address set in
the address define. Otherwise, the KMES Series 3 will not verify the certificates presented by Vault to the KMES
Series 3.

NOTE: cluster_address is not defined in the vault.hcl file above because only a single Vault server is being
utilized for this demo.

For more information about configuring the Vault configuration file, please refer to Vault's documentation at
the following url: https://learn.hashicorp.com/tutorials/vault/configure-vault

https://learn.hashicorp.com/tutorials/vault/getting-started-deploy
https://learn.hashicorp.com/tutorials/vault/getting-started-deploy
https://learn.hashicorp.com/tutorials/vault/configure-vault

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 7 of 39

[3.3] START THE DEV SERVER
To start the Vault dev server, run:

$ vault server -dev -config=/etc/vault.d/vault.hcl
==> Vault server configuration:

Api Address: https://10.0.5.118:8210
Cgo: disabled

Cluster Address: https://10.0.5.118:8211
Go Version: go1.14.7
Listener 1: tcp (addr: "127.0.0.1:8200", cluster address: "127.0.0.1:8201", max_

request_duration: "1m30s", max_request_size: "33554432", tls: "disabled")
Listener 2: tcp (addr: "10.0.5.118:8210", cluster address: "10.0.5.118:8211", max_

request_duration: "1m30s", max_request_size: "33554432", tls: "enabled")
Listener 3: tcp (addr: "127.0.0.1:8210", cluster address: "127.0.0.1:8211", max_

request_duration: "1m30s", max_request_size: "33554432", tls: "enabled")
Log Level: info

Mlock: supported: true, enabled: false
Recovery Mode: false

Storage: file
Version: Vault v1.5.4+ent

Version Sha: 1d81c1e64854fb0dcb3323468d95ad5590460a40

WARNING! dev mode is enabled! In this mode, Vault runs entirely in-memory
and starts unsealed with a single unseal key. The root token is already
authenticated to the CLI, so you can immediately begin using Vault.

You may need to set the following environment variable:

$ export VAULT_ADDR='http://127.0.0.1:8200'

The unseal key and root token are displayed below in case you want to
seal/unseal the Vault or re-authenticate.

Unseal Key: I29KTEqQVcl2Pa3xKgXffcwP9ae0ow157NFuG7Pj14A=
Root Token: s.XtzYp0lIJtaW3fMAtgWHdXxo

Development mode should NOT be used in production installations!

==> Vault server started! Log data will stream in below:

You should see output similar to that above. Notice that Unseal Key and Root Token values are displayed.

NOTE: The dev server stores all its data in-memory (but still encrypted), listens on localhost without TLS, and
automatically unseals and shows you the unseal key and root access key.

With the dev server started, perform the following:

1. Launch a new terminal session.

2. Copy and run the export VAULT_ADDR ... command from the terminal output. This will configure the
Vault client to talk to the dev server.

$ export VAULT_ADDR='http://127.0.0.1:8200'

Vault CLI determines which Vault servers to send requests using the VAULT_ADDR environment variable.

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 8 of 39

3. Save the unseal key somewhere. Don't worry about how to save this securely. For now, just save it
anywhere.

4. Set the VAULT_TOKEN environment variable value to the generated Root Token value displayed in the
terminal output.

$ export VAULT_TOKEN="s.akT1I498dqOy4Z2C5ZimASlR"

To interact with Vault, you must provide a valid token. Setting this environment variable is a way to
provide the token to Vault via CLI.

Verify the Server is Running

Verify the server is running by running the vault status command. If it ran successfully, the output should look
like the following:

$ vault status
Key Value
--- -----
Seal Type shamir
Initialized true
Sealed false
Total Shares 1
Threshold 1
Version 1.5.4+ent
Cluster Name vault-cluster-8667d21d
Cluster ID b3977a72-9be9-d900-c0ec-c6012b1902da
HA Enabled false

IMPORTANT: If using the Enterprise version of Vault, the dev server will seal itself 30 minutes after it is started.
This means that it will be necessary to perform the following actions every time that the dev server times out, if
using the Enterprise version of Vault:

1. Trigger a Vault shutdown with CTRL+C in the terminal window where the Vault server was running.

2. Run the following command in a terminal:

$ rm -r /tmp/vault/

3. Re-perform steps 3.2 thru 3.5.

4. Re-configure either the userpass or TLS authentication auth method in Vault, as described in section 4.

For more information about how the dev server works, please refer to
https://www.vaultproject.io/docs/concepts/dev-server.

As stated previously, the information provided in this integration guide can be applied to a production
implementation of Vault. For specifics on how to deploy Vault in a production environment please refer to
HashiCorp's Vault documentation (https://learn.hashicorp.com/tutorials/vault/getting-started-deploy).

https://www.vaultproject.io/docs/concepts/dev-server
https://learn.hashicorp.com/tutorials/vault/getting-started-deploy

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 9 of 39

[3.4] ACCESSING THE VAULT UI
Go to http://localhost:8200 in a web browser.

Copy and paste in the Root Token that was output from the vault server command into the "Token" field, then
click "Sign In".

http://localhost:8200/

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 10 of 39

[3.5] MODIFY THE DEFAULT ACL POLICY
Navigate to the Policies menu, then select the "default" ACL policy.

Click "Edit Policy", then scroll to the bottom of the policy and paste in the following starting at line 89:

path "secret/data/*" {
capabilities = ["create", "read", "update", "delete", "list"]

}
path "secret/*" {

capabilities = ["create", "read", "update", "delete", "list"]
}
path "sys/*" {

capabilities = ["create", "read", "update", "delete", "list"]
}
path "sys/mounts/*" {

capabilities = ["create", "read", "update", "delete", "list"]
}
List enabled secrets engine
path "sys/mounts" {

capabilities = ["create", "read", "update", "delete", "list"]
}
Work with pki secrets engine
path "pki*" {

capabilities = ["create", "read", "update", "delete", "list", "sudo"]
}

Click "Save", then a message should appear in the bottom left-hand side of the page confirming that ACL policy
"default" was successfully saved.

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 11 of 39

[4] SETTING UP AUTHENTICATION BETWEEN THE KMES SERIES 3 AND VAULT
Two different methods can be used to authenticate the KMES Series 3 with Vault, which is the Userpass Auth
Method or the TLS Certificates Auth Method. Instructions for both methods are provided in the following
sections.

[4.1] USERPASS AUTH METHOD
The userpass auth method allows the KMES Series 3 to authenticate with Vault using a username and password
combination.

Configuring userpass authentication in Vault

Method 1 - Using the Vault UI

Navigate to the Access page in the Vault UI, then select "Enable new method".

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 12 of 39

Select the "Username & Password" authentication method, then click "Next".

Leave the path as the default value, "userpass", then click "Enable Method".

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 13 of 39

Navigate back to the menu for the "userpass" auth method just created, then click "Create user".

Specify a username and password for the new user, then click "Save".

A message should appear in the bottom left-hand side of the page confirming that the new "userpass_
authentication_demo" user was saved successfully.

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 14 of 39

Method 2 - Using the Vault CLI

Enable the userpass auth method:

$ vault auth enable userpass

Success! Enabled userpass auth method at: userpass/

Configure it with users that are allowed to authenticate:

$ vault write auth/userpass/users/userpass_authentication_demo \
password=Futurex123 \
policies=admins

Success! Data written to: auth/userpass/users/userpass_authentication_demo

This creates a new user "userpass_authentication_demo" with the password "Futurex123" that will be
associated with the "admins" policy. This is the only configuration necessary.

Create a Vault Userpass Authentication Cloud Credential

Log in to the KMES Series 3 application interface with the default Admin users.

Navigate to the Cloud Credentialsmenu, then click the "Add Cloud Credential..." button.

Click the "Service" dropdown and select "Vault Userpass Authentication".

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 15 of 39

Any value can be specified in the "Name" field, but the "Access Name" value must match the name of the user
that was created under the userpass auth method in Vault.

In the "Password" field, click the "Enter" button and set the same password that was set for the user created in
Vault. Click "Save".

The Add Cloud Credential dialog should look similar to the image below, then click "OK".

Testing userpass authentication

Navigate to the Configurationmenu, then double-click on "Vault API Options".

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 16 of 39

Check the "Enable Vault Service" box.

Set the Vault API URL to "https://10.0.5.118:8210/v1" and select the Vault Userpass Authentication Cloud
Credential created in the previous step.

The rest of the fields can be left as their default values. Click "Test Configuration...".

If all of the configuration steps were completed properly the test should result in a success.

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 17 of 39

[4.2] TLS CERTIFICATES AUTH METHOD
The cert auth method allows the KMES Series 3 to authenticate with Vault using SSL/TLS client certificates which
are either signed by a CA or self-signed.

Configure the Vault Client connection pair on the KMES Series 3

For the TLS Certificates auth method, it is necessary to first configure the Vault Client connection pair on the
KMES Series 3 before configuring the cert authentication method in Vault.

Log in to the KMES Series 3 application interface with the default Admin users.

Navigate to the Configurationmenu, then double-click on Network Options. Go to the TLS/SSL Settings tab, then
click the dropdown and switch to the Vault Client connection pair.

Uncheck the "Use System/Host API SSL Parameters" and "Use Futurex Certificates" boxes, then click the "Edit..."
button next to "PKI keys" in the User Certificates section.

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 18 of 39

Generate a new PKI key pair, then request a CSR.

Next, the CSR just generated needs to be signed by a Certificate Authority (CA). For this demonstration, the CSR
will be signed by the same CA that signed the client certificate that was configured in the Vault configuration file
in section 3.2. Upload the CA certificate and the signed CSR to the storage medium configured on the KMES
Series 3, then click the "Edit..." button next to "Certificates" in the User Certificates section, as shown below.

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 19 of 39

Right-click on the "Vault Client SSL CA" X.509 Certificate Container, then click "Import...".

Click the "Add" button in the lower-left area of the Import Certificates dialog, then find, select, and open the CA
and signed CSR, and click "OK".

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 20 of 39

The certificate tree for the Vault Client connection pair is loaded now, as shown below.

Click the "OK" button to save.

NOTE: As previously noted, for this demonstration, the same CSR was used to sign both the Vault Client
connection pair CSR and the client certificate set in the Vault configuration file. If this were not the case, then
the CA that signed the Vault Client connection pair CSR would need to be loaded to the "Vault Client SSL CA"
X.509 Certificate Container with the accompanying signed certificate, and the CA that signed the client
certificate set in the Vault configuration file would need to be loaded to any of the "Vault Client Trusted CA"
X.509 Certificate Containers, along with the accompanying signed certificate.

Click the "OK" button to save and exit out of the Network Optionsmenu.

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 21 of 39

Configuring cert authentication in Vault

Method 1 - Using the Vault UI

Navigate to the Access page in the Vault UI, then select "Enable new method".

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 22 of 39

Select the "TLS Certificates" authentication method, then click "Next".

Leave the path as the default value, "cert", then click "Enable Method".

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 23 of 39

Navigate back to the menu for the "cert" auth method just created, then click "Create certificate".

Specify a name for the certificate and upload a single .pem file that contains the certificate chain configured for
the Vault Client connection pair on the KMES Series 3. Then click "Save".

A message should appear in the bottom left-hand side of the page confirming that the new "certificate_
authentication_demo" certificate was saved successfully.

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 24 of 39

Method 2 - Using the Vault CLI

Enable the cert auth method:

$ vault auth enable cert

Success! Enabled cert auth method at: cert/

Configure it with trusted certificates that are allowed to authenticate:

$ vault write auth/cert/certs/certificate_authentication_demo \
display_name=certificate_authentication_demo \
policies=web,prod \
certificate=@chain.pem \
ttl=3600

Success! Data written to: auth/cert/certs/certificate_authentication_demo

This creates a new trusted certificate "certificate_authentication_demo" with same display name and the "web"
and "prod" policies. The certificate (public key) used to verify clients is given by the "chain.pem" file. Lastly, an
optional ttl value can be provided in seconds to limit the lease duration.

Create a Vault Certificate Authentication Cloud Credential

In the KMES Series 3 application interface, navigate to the Cloud Credentialsmenu, then click the "Add Cloud
Credential..." button.

Click the "Service" dropdown and select "Vault Certificate Authentication".

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 25 of 39

Any value can be specified in the "Name" field, but the "Access Name" value must match the name of the
certificate that was created under the cert auth method in Vault.

The value for the "TLS Config" field defaults to "Vault Client". This configures the Cloud Credential to use the
"Vault Client" connection pair for authenticating with Vault.

The Add Cloud Credential dialog should look similar to the image below, then click "OK".

Testing cert authentication

Navigate to the Configurationmenu, then double-click on "Vault API Options".

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 26 of 39

Check the "Enable Vault Service" box.

Set the Vault API URL to "https://10.0.5.118:8210/v1" and select the Vault Certificate Authentication Cloud
Credential created in the previous step.

The rest of the fields can be left as their default values. Click "Test Configuration...".

If all of the configuration steps were completed properly the test should result in a success.

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 27 of 39

[5] OFFLOADING RANDOMLY GENERATED PKCS #12 PASSPHRASES TO VAULT
In this section, two examples will be covered in which Futurex APIs are invoked to request an X.509 certificate
and associated key pair, which is issued as a PKCS #12 file. Then, the passphrase that was generated for
decrypting the PKCS #12 file is automatically offloaded to Vault by the KMES Series 3.

The first example will involve running the RAUP Excrypt command while connected to the System/Host API port
on the KMES via OpenSSL.

The second example will involve sending a POST request to the KMES RESTful API using the Postman application.

[5.1] REQUIRED SETUP ON THE KMES SERIES 3
Before attempting either of the examples, the following must be set up on the KMES Series 3:

1. Create a Signing Approval Group.

2. Create a CA tree (IMPORTANT: Ensure that PMK is chosen as the major key for all certificates created in
this CA tree)

3. Add an Issuance Policy to the leaf certificate in the CA tree (IMPORTANT: In the X.509 tab of the Issuance
Policy dialog, ensure that all of the permission boxes are checked and that the Signing Approval Group
created in step 1 is selected)

4. Create a new User Group with all of the "Manage certificates", "Manage keys", and "Perform
cryptographic operations" permissions, and set the number of users required to log in to "1".

5. Add one user to the User Group that was created in the previous step.

6. Give the created User Group "Use" permissions on all of the following:

l The Signing Approval Group created in step 1

l The entire CA tree created in step 2

l The Cloud Credential that is being used in the Vault API Optionsmenu

NOTE: Please refer to the KMES Series 3 user guide for information about completing the actions above.

[5.2] EXAMPLE - EXCRYPT COMMAND RAUP
First, ensure that the RAUP command is enabled in the Host API Optionsmenu.

Then, connect to the System/Host API port on the KMES via OpenSSL.

$ openssl s_client -connect 10.0.8.28:2001 -cert signed-client-cert.pem -key private-key.pem -
CApath . -CAfile chain.pem

NOTE: The System/Host API connection pair on the KMES Series 3 must be configured so that this OpenSSL
connection will work. Instructions for setting this up are outside the scope of this course. Please refer to the
KMES Series 3 user guide for more information.

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 28 of 39

Once connected successfully, run the RKLO Excrypt command twice to login in with the default Admin users.

[AORKLO;DAAdmin1;CHsafest;]
[AORKLO;ANY;UL1;UT2;RL1;]

[AORKLO;DAAdmin2;CHsafest;]
[AORKLO;ANY;UL2;UT2;RL0;]

Now that we're logged in, we can run the RAUP command to upload a new X.509 PKI request.

[AORAUP;CADemo CA;RTDemo Sub Cert;NATestUpload;HASHA256;GNDemo Approval Group;ENExample TLS Cer-
tificate;SN{2.5.4.3,12,436F6D6D6F6E4E616D6548657265},{1.3.3.7,19,30313233};KTRSA 2048;MP1;]

[AORAUP;ANY;AP1;ID34E2CCE30BC2F336;PW567E463B516F3120246C265446366A585D63636A794342215F344B7D43266F-
765D454C3B5741307068614F657A487A2234692E51754B5C46342477282856253C;]

If the command succeeds, as it does above, a new X.509 PKI, issued as a PKCS #12 file, will be generated on the
KMES Series 3, and the passphrase for the PKCS #12 file will be stored in Vault.

NOTE: The RAUP command above uses the CA tree that was created in section 5.1. For more information about
the RAUP command tags, please refer to API documentation in the Futurex Portal.

Now, if we log in to the Vault UI and navigate into the "secret/" folder we'll see the passphrase secret was
added successfully.

Click on the "CommonNameHere-34E2CCE30BC2F336" secret.

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 29 of 39

We see that the Key is "passphrase" and the Value is the passphrase for the PKCS #12 file that was generated on
the KMES Series 3.

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 30 of 39

[5.3] EXAMPLE - POST REQUEST TO THE KMES RESTFUL API USING POSTMAN
This example requires an additional configuration to be made on the KMES Series 3.

Configure JWT Options

Navigate to Configuration -> JWT Options.

In the Json Web Token Option dialog, set the Issuer Name to "futurex" and set "safest123" as an HMAC Key
password. The remaining fields can be left as their default values. Then, click "Save".

Sending a POST request to the KMES RESTful API using Postman

NOTE: To perform the steps that follow, you must have the Postman application installed on your local
computer. The same concepts would apply if you wanted to use cURL rather than Postman. However, to use
cURL, you would need to generate the JWT token elsewhere (i.e., a website such as https://jwt.io/), whereas,
with Postman, we'll be able to generate a JWT token "on-the-fly" when the POST request is sent.

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 31 of 39

Start the Postman application, then click the orange "New" button in the top left area of the page.

Select "Collection".

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 32 of 39

Set any name for the Collection, then navigate to the Variables tab and set "jwt_token" in the VARIABLE field,
then click "Create" (nothing else needs to be set in this dialog).

Right-click on the 3 dots in the new Collection and select "Add Request".

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 33 of 39

Set any name for the request. The most important part is that the request is associated with the newly created
Collection. Save the request.

Expand the Collection folder and select the request that was just created. Set the request URL to
"https://10.0.5.125:8081/kmes/v6/certificates/signing-requests" and change the request type to "POST" in the
drop-down.

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 34 of 39

Switch to the Authorization tab, set the TYPE to "Bearer Token", then set the Token value to "{{jwt_token}}".

Navigate to the Body tab, select the "raw" bullet, then paste in the JSON shown below.

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 35 of 39

The request's body is where we specify that we want the KMES Series 3 to create a new X.509 PKI. The CA tree
that we built on the KMES is defined, along with several other parameters. One of the most important
parameters to notice is the "randomPassphrase" value set to "true". The "randomPassphrase" parameter
ensures that the PKI request is issued as PKCS #12. Then, the passphrase for the PKCS #12 file will be stored in
Vault.

Navigate to the Pre-request Script tab and paste in the Javascript below. This code is responsible for generating
the JWT token used for authentication to the KMES, on-the-fly. You'll notice that the value for "hmac_key" in
line 1 matches what was set in the JWT Options menu on the KMES.

After pasting in the Javascript, click on the settings icon in the upper-right area of the page. Click the Globals
button.

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 36 of 39

Set two new variables exactly as they are shown below, then click "Save".

The setup is complete. Now click "Save" and then send the POST request.

If the request is successful, the body of the response will contain the message "Successfully created new entry",
as it does above.

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 37 of 39

Now if you log back in to the Vault UI and go to "secret/testpath/" you will see a new entry, with the ID values
after "CommonNameHere" matching the "requestId" value in the body of the response in Postman.

This confirms that the PKCS #12 passphrase was successfully sent from the KMES Series 3 to Vault for storage.

INTEGRATION GUIDE| HASHICORP VAULT / KMES SERIES 3 PKCS #12 PASSWORD EXPORT

Page 38 of 39

APPENDIX A: XCEPTIONAL SUPPORT

In today’s high-paced environment, we know you are looking for timely and effective resolutions for your
mission-critical needs. That is why our Xceptional Support Team does whatever it takes to ensure you have the
best experience and support possible. Every time. Guaranteed.

l 24x7x365 mission critical support
l Level 1 to level 3 support
l Extremely knowledgeable subject matter experts

At Futurex, we strive to supply you with the latest data encryption innovations as well as our best-in-class
support services. Our Xceptional Support Team goes above and beyond to meet your needs and provide you
with exclusive services that you cannot find anywhere else in the industry.

l Technical Services
l Onsite Training
l Virtual Training
l Customized Consulting
l Customized Software Solutions
l Secure Key Generation, Printing, and Mailing
l Remote Key Injection
l Certificate Authority Services

Toll-Free: 1-800-251-5112

E-mail: support@futurex.com

mailto:support@futurex.com

ENGINEERING CAMPUS

864 Old Boerne Road

Bulverde, Texas, USA 78163

Phone: +1 830-980-9782

+1 830-438-8782

E-mail: info@futurex.com

XCEPTIONAL SUPPORT

24x7x365

Toll-Free: 1-800-251-5112

E-mail: support@futurex.com

SOLUTIONS ARCHITECT

E-mail: solutions@futurex.com

mailto:info@futurex.com
mailto:support@futurex.com
mailto:solutions@futurex.com

	[1] Overview of the HashiCorp Vault / KMES Series 3 Secret Export Integration
	[1.1] About HashiCorp Vault
	[1.2] Purpose of the Integration

	[2] Prerequisites
	[3] Vault Setup and Configuration
	[3.1] Download and install Vault
	[3.2] Configure Vault
	[3.3] Start the Dev Server
	[3.4] Accessing the Vault UI
	[3.5] Modify the default ACL Policy

	[4] Setting Up Authentication between the KMES Series 3 and Vault
	[4.1] Userpass Auth Method
	[4.2] TLS Certificates Auth Method

	[5] Offloading Randomly Generated PKCS #12 Passphrases to Vault
	[5.1] Required Setup on the KMES Series 3
	[5.2] Example - Excrypt Command RAUP
	[5.3] Example - POST request to the KMES RESTful API using Postman

	APPENDIX A: XCEPTIONAL SUPPORT

