
MICROSOFT SQL SERVER
Integration Guide

Applicable Devices:
KMES Series 3
Applicable Versions:
6.3.1.x

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION PROPRIETARY TO FUTUREX, LP. ANY UNAUTHORIZED USE, DISCLOSURE, OR
DUPLICATION OF THIS DOCUMENT OR ANY OF ITS CONTENTS IS EXPRESSLY PROHIBITED.

INTEGRATION GUIDE|MICROSOFT SQL SERVER

Page 2 of 20

TABLE OF CONTENTS

[1] DOCUMENT INFORMATION 3

[1.1] DOCUMENT OVERVIEW 3

[1.2] APPLICATION DESCRIPTION 3

[2] PREREQUISITES 5

[3] KMES SERIES 3 CONFIGURATION 6

[3.1] CONFIGURE TLS COMMUNICATION BETWEEN THE KMES SERIES 3 AND THE MICROSOFT SQL SERVER INSTANCE 6

[3.2] CREATE AN IDENTITY FOR MS SQL SERVER AND GRANT IT THE REQUIRED PERMISSIONS 10

[3.3] ENABLE THE HOST API COMMANDS REQUIRED FOR THE MICROSOFT SQL SERVER OPERATION 11

[3.4] GRANT THE MS SQL SERVER ROLE "USE" PERMISSIONS ON THE CA TREE 12

[4] INSTALL AND CONFIGURE FUTUREX CLIENT LIBRARY (FXCL) EKM 13

[4.1] INSTALLING FXCL EKM 13

[4.2] CONFIGURING FXCL EKM 13

[5] CONFIGURING EKM IN MICROSOFT SQL SERVER 15

[5.1] ENABLE THE EKM PROVIDER OPTION 15

[5.2] REGISTER THE FXCL EKM PROVIDER 15

[6] ENABLING TDE IN MICROSOFT SQL SERVER USING EKM 16

APPENDIX A: XCEPTIONAL SUPPORT 19

INTEGRATION GUIDE|MICROSOFT SQL SERVER

Page 3 of 20

[1] DOCUMENT INFORMATION

[1.1] DOCUMENT OVERVIEW
The purpose of this document is to provide information regarding the configuration of the Futurex KMES Series
3 with Microsoft SQL Server Transparent Data Encryption (TDE) using EKM libraries. For additional questions
related to your KMES Series 3 device, see the relevant user guide.

[1.2] APPLICATION DESCRIPTION

[1.2.1] About Microsoft SQL Server

Microsoft SQL Server is a relational database management system (RDBMS) used for large-scale online
transaction processing (OLTP), data warehousing, and e-commerce applications. It is also a business intelligence
platform for data integration, analysis, and reporting solutions.

[1.2.2] About Transparent Data Encryption (TDE)

From Microsoft's documentation website: "Transparent Data Encryption (TDE) encrypts SQL Server data files.
This encryption is known as encrypting data at rest.

To help secure a database, you can take precautions like:

l Designing a secure system.

l Encrypting confidential assets.

l Building a firewall around the database servers.

But a malicious party who steals physical media like drives or backup tapes can restore or attach the database
and browse its data.

One solution is to encrypt sensitive data in a database and use a certificate to protect the keys that encrypt the
data. This solution prevents anyone without the keys from using the data. But you must plan this kind of
protection in advance.

TDE does real-time I/O encryption and decryption of data and log files. The encryption uses a database
encryption key (DEK). The database boot record stores the key for availability during recovery. The DEK is a
symmetric key. It's secured by a certificate that the server's master database stores or by an asymmetric key
that an EKM module protects.

TDE protects data at rest, which is the data and log files. It lets you follow many laws, regulations, and guidelines
established in various industries. This ability lets software developers encrypt data by using AES and 3DES
encryption algorithms without changing existing applications."

INTEGRATION GUIDE|MICROSOFT SQL SERVER

Page 4 of 20

[1.2.3] Encryption Hierarchy and Integration with the KMES Series 3

Through Extensible Key Management (EKM), Microsoft SQL Server can utilize a Futurex KMES Series 3 for key
management and encryption acceleration.

In this configuration, data can be encrypted using encryption keys that only the database user has access to on
the external EKM/HSM module.

The figure below shows the architecture of TDE encryption, as well as the relationship between the SQL Server
database master key and the KMES Series 3.

NOTE: Only the database-level items (i.e., the database encryption key) are user-configurable when you use TDE
on SQL Database.

INTEGRATION GUIDE|MICROSOFT SQL SERVER

Page 5 of 20

[2] PREREQUISITES
Supported Hardware:

l KMES Series 3, 6.3.1.x and above

Supported Operating Systems:

l Windows 7 and above

Other:

l OpenSSL
l Microsoft SQL Server
l Microsoft SQL Server Management Studio

INTEGRATION GUIDE|MICROSOFT SQL SERVER

Page 6 of 20

[3] KMES SERIES 3 CONFIGURATION
The first half of this section will cover the steps needed to configure TLS communication between the KMES and
the Microsoft SQL Server instance. The second half of this section will cover general configurations that need to
be made on the KMES Series 3 to allow Microsoft SQL Server to integrate with the KMES, via the FXCL EKM
library, for Transparent Data Encryption.

Every step in this section requires being logged in to the KMES Series application interface with the default
Admin identities.

[3.1] CONFIGURE TLS COMMUNICATION BETWEEN THE KMES SERIES 3 AND THE MICROSOFT
SQL SERVER INSTANCE

[3.1.1] Create a Certificate Authority (CA)

1. Navigate to PKI -> Certificate Authorities, then click the Add CA... button at the bottom of the page.

2. In the Certificate Authority dialog, enter a name for the Certificate Container, leave all other fields as the
default values, then click OK.

3. The Certificate Container that was just created will be listed now in the Certificate Authorities menu.

4. Right-click on the Certificate Container again and select Add Certificate -> New Certificate...

5. In the Subject DN tab, change the Preset dropdown to Classic and specify a Common Name for the
certificate, such as "System TLS CA Root".

6. In the Basic Info tab, leave all fields set to the default values.

7. In the V3 Extensions tab, select the "Certificate Authority" profile, then click OK.

8. The root CA certificate will be listed now under the previously created Certificate Container.

[3.1.2] Generate a CSR for the System/Host API connection pair

1. Navigate to Administration -> Configuration -> Network Options.

2. In the Network Options dialog, select the TLS/SSL Settings tab.

INTEGRATION GUIDE|MICROSOFT SQL SERVER

Page 7 of 20

3. Under the System/Host API connection pair, uncheck "Use Futurex certificates", then click Edit... next to
PKI keys in the User Certificates section.

4. In the Application Public Keys dialog, click Generate...

5. There will be a warning stating that SSL will not be functional until new certificates are imported. Select
Yes if you wish to continue.

6. In the PKI Parameters dialog, leave the default values set and click OK.

7. It should show that an HSM trusted asymmetric key is loaded now in the Application Public Keys dialog. If
this is the case, click Request...

8. In the Subject DN tab, set a Common Name for the certificate, such as "KMES".

9. In the V3 Extensions tab, select the "TLS Server Certificate" profile.

10. In the PKCS #10 Info tab, select a save location for the CSR, then click OK.

11. There should be a message stating that the certificate signing request was successfully written to the file
location that was selected. Click OK.

12. Click OK again to save the Application Public Keys settings.

13. In the main Network Options dialog, it should now say "Loaded" next to PKI keys for the System/Host API
connection pair. Click OK to save.

[3.1.3] Sign the System/Host API CSR

1. Navigate to the PKI -> Certificate Authoritiesmenu.

2. Right-click on the root CA certificate created in section 3.1.1, then select Add Certificate -> From
Request...

3. In the file browser, find and select the CSR that was generated for the System/Host API connection pair.

INTEGRATION GUIDE|MICROSOFT SQL SERVER

Page 8 of 20

4. Once loaded, none of the settings need to be modified for the certificate. Click OK.

5. The signed System/Host API certificate should now show under the root CA certificate on the Certificate
Authorities page.

[3.1.4] Export the Root CA certificate

1. Navigate to the PKI -> Certificate Authoritiesmenu.

2. Right-click on the "System TLS CA Root" certificate, then select Export -> Certificate(s)...

3. In the Export Certificate dialog, change the encoding to "PEM", then click Browse...

4. In the file browser, navigate to the location where you want to save the Root CA certificate. Specify a
unique name for the file, such as "root_cert.pem", then click Open.

5. Click OK. A message box will pop up stating that the PEM file was successfully written to the location that
you specified.

NOTE: The Root CA certificate will be configured later inside of the FXCL EKM configuration file.

[3.1.5] Export the signed System/Host API certificate

1. Navigate to the PKI -> Certificate Authoritiesmenu.

2. Right-click on the "KMES" certificate, then select Export -> Certificate(s)...

3. In the Export Certificate dialog, change the encoding to "PEM", then click Browse...

4. In the file browser, navigate to the location where you want to save the signed System/Host API
certificate. Specify a unique name for the file, such as "signed_kmes_cert.pem", then click Open.

5. Click OK. A message box will pop up stating that the PEM file was successfully written to the location that
you specified.

[3.1.6] Load the exported certificates into the System/Host API connection pair

1. Navigate to Administration -> Configuration -> Network Options.

2. In the Network Options dialog, select the TLS/SSL Settings tab.

3. Click Edit... next to Certificates in the User Certificates section.

4. Right-click on the System/Host API SSL CA X.509 Certificate Container, then select Import...

5. Click Add... at the bottom of the Import Certificates dialog.

INTEGRATION GUIDE|MICROSOFT SQL SERVER

Page 9 of 20

6. In the file browser, find and select both the root CA certificate and the signed System/Host API certificate,
then click Open. The certificate chain should appear as shown below. Click OK in two consecutive dialogs
to save the changes.

7. In the Network Options dialog, the System/Host API connection pair should show "Signed loaded" next to
Certificates in the User Certificates section, as shown below:

8. Click OK to save and exit the Network Options dialog.

[3.1.7] Issue a client certificate for Microsoft SQL Server

NOTE: The client certificate that is being created for Microsoft SQL Server will be configured later inside of the
FXCL EKM configuration file.

1. Navigate to the PKI -> Certificate Authoritiesmenu.

2. Right-click on the System TLS CA Root certificate and select Add Certificate -> New Certificate....

INTEGRATION GUIDE|MICROSOFT SQL SERVER

Page 10 of 20

3. In the Subject DN tab, change the Preset dropdown to Classic and set "SqlServer" as the Common Name
for the certificate.

4. In the Basic Info tab, leave all fields set to the default values.

5. In the V3 Extensions tab, select the "TLS Client Certificate" profile, then click OK.

6. The Microsoft SQL Server client certificate will be listed now under the System TLS CA Root certificate.

[3.1.8] Export the Microsoft SQL Server client certificate as PKCS #12 file

NOTE: To be able to perform the steps below you must go to Administration -> Configuration -> Options and
enable the "Allow export of certificates using passwords" option.

1. Navigate to the PKI -> Certificate Authoritiesmenu.

2. Right-click on the "SqlServer" certificate, then select Export -> PKCS12...

3. Make sure that the "Export Selected" option is selected, specify a unique name for the export file, such as
"PKI.p12", then click Next.

4. Input a file password of your choosing, then click Next.

NOTE: The P12 file password will be configured later inside of the FXCL EKM configuration file.

5. Click Finish to initate the export.

NOTE: The Microsoft SQL Server client certificate and the Root CA certificate that was exported in section 3.1.4
both need to be moved to the computer where the SQL Server is running. In the next section, they will be
configured and used for TLS communication with the KMES Series 3.

[3.2] CREATE AN IDENTITY FOR MS SQL SERVER AND GRANT IT THE REQUIRED PERMISSIONS
A new role and identity need to be created for MS SQL Server on the KMES Series 3.

Create a new role

1. Navigate to the Identity Management -> Rolesmenu and add a new role. This will open the Role Editor
dialog.

2. Name the role "MS SQL Server" and change the number of logins required to 1. Leave all other fields
under the Info tab set as the default values.

3. Under the Permissions tab, select the following permissions:

l Certificate Authority -> Export

l Cryptographic Operations -> Encrypt, Decrypt

l Keys -> Add, Delete

4. Under the Advanced tab, set Allowed Ports to only Host API. Leave the other settings set to the default

INTEGRATION GUIDE|MICROSOFT SQL SERVER

Page 11 of 20

values.

5. Click OK to finish creating the role.

Create a new identity and assign it the MS SQL Server role and Password authentication credentials

1. Navigate to the Identity Management -> Identitiesmenu. Right-click and select Add -> Client Application
to add a new identity. This will open the Identity Editor dialog.

2. Specify "SqlServer" in the Name field. Leave all other fields under the Info tab set as the default values.

NOTE: The name that is set for this identity must match the Common Name that was set for the Microsoft
SQL Server client certificate in section 3.1.7.

3. Under the Assigned Roles tab, select the MS SQL Server role.

4. Under the Authentication tab, click the Add button to add a new credential.

5. In the Configure Credential dialog, select Password in the Type dropdown. The Provider and Mechanism
fields should populate with Local Application and Password, respectively. Select the Change and set a
password for the credential, then click Save. Click OK to finish configuring the credential.

6. Remove the default API Key mechanism, leaving only the Password credential, and click OK to save.

[3.3] ENABLE THE HOST API COMMANDS REQUIRED FOR THE MICROSOFT SQL SERVER
OPERATION
Because FXCL EKM will be connecting to the Host API port on the KMES, users must define which Host API
commands will be enabled for execution by FXCL EKM. To set the enabled commands, complete the following
steps:

1. Navigate to Administration -> Configuration -> Host API Options, enable the commands listed below, then
click Save.

l RKGP: Export Asymmetric Key

l RKLN: Lookup Objects

l RKDP: Delete Asymmetric Key

l RKLO: Login User

l RKCK: Create Asymmetric Key

l RKRE: RSA Encrypt

l RKRD: RSA Decrypt

l RKPK: Pop Generated Key

l CLKY -> get: Retrieve HSM protected key

INTEGRATION GUIDE|MICROSOFT SQL SERVER

Page 12 of 20

[3.4] GRANT THE MS SQL SERVER ROLE "USE" PERMISSIONS ON THE CA TREE
1. Navigate to the PKI -> Certificate Authoritiesmenu.

2. Right-click on the CA container that was created in section 3.1.1, then select Permission....

3. Grant the MS SQL Server role the "Use" permission, select "Apply to children recursively", then click OK to
save.

INTEGRATION GUIDE|MICROSOFT SQL SERVER

Page 13 of 20

[4] INSTALL AND CONFIGURE FUTUREX CLIENT LIBRARY (FXCL) EKM
The Futurex Client Library, or FXCL, is a set of functions, offered using either Java (Java Native Interface) or C++,
used by applications to access cryptographic processing and key management functionality.

[4.1] INSTALLING FXCL EKM
NOTE: To maintain system security, it is important to only install and operate copies of FXCL that are obtained
directly from Futurex. These files will either be provided directly by a member of the Solutions Architect team or
made available for download on the Futurex Portal or equivalent Futurex-operated file distribution platform.

1. Download or copy the fxcl-x.x.x-win64.zip file to the computer/server that will be running the
Microsoft SQL Server instance.

2. Unzip the file in any directory, then navigate into the fxcl-x.x.x-win64\bin folder. There you will
see the following files:

3. Copy the ekm.config.json and libfxcl-ekm.dll files to C:\Program
Files\Futurex\fxcl\kmes\ekm\, then change the name of the ekm.config.json file to
config.json.

[4.2] CONFIGURING FXCL EKM
1. Create a Certs\ directory in C:\ (i.e., C:\Certs). Then, copy the Root CA certificate PEM file (exported

from the KMES in section 3.1.4) and the Microsoft SQL Server client certificate PKCS #12 file (exported
from the KMES in section 3.1.8) into the Certs\ folder.

2. Create a Fxcl_Logs\ directory in C:\ (i.e., C:\Fxcl_Logs). The FXCL EKM configuration file will be
configured to output the FXCL EKM logs to the Fxcl_Logs\ directory.

3. Edit the config.json file to point to the TLS connection certificates and network-connected KMES
Series 3 device. An example config.json file is shown below:

INTEGRATION GUIDE|MICROSOFT SQL SERVER

Page 14 of 20

{
// Enables output via DebugOutputString
// (default: false)
// Note that regardless of this setting, output is
// placed in the debug view while loading the config.
"enable_debug_view": false,

// A file to place logs into. Optional.
// If not provided, no log file is made.
"log_file": "C:\\Fxcl_Logs\\fxcl.log",

// Level of logging to emit. Case insensitive.
// possible values: None, Error, Info, Debug, Traffic (default: Info)
"log_level": "traffic",

// What kind of key storage unit is this?
// possible values: kmes (default: kmes)
// Not currently used, it always uses kmes.
"driver": "kmes",

// The host to connect to. Required.
"host": "10.0.8.22:2001",

// A PEM file containing a list of trusted CA certificates. Required.
"ca": "C:\\Certs\\root_cert.pem",

// A P12 file containing leaf certificate and key. Required.
"p12": "C:\\Certs\\PKI.p12",

// Password to unlock the P12 file. Optional.
// If not given, assumes it doesn't need a password.
"p12_pass": "safest"

}

NOTE: The root_cert.pem file is the Root CA certificate exported in section 3.1.4 and the PKI.p12 file
is the Microsoft SQL Server client certificate exported as a PKCS #12 file in section 3.1.8.

INTEGRATION GUIDE|MICROSOFT SQL SERVER

Page 15 of 20

[5] CONFIGURING EKM IN MICROSOFT SQL SERVER
This section will cover the steps needed to enable EKM in Microsoft SQL Server and register the FXCL EKM
provider.

[5.1] ENABLE THE EKM PROVIDER OPTION
In order to use the FXCL EKM provider, the EKM provider option must first be enabled on the SQL Server.

1. Open the SQL Server Management Studio application.

2. Connect to the SQL Server.

3. Open a Query window and execute the following:

sp_configure 'show advanced', 1
GO
RECONFIGURE
GO
sp_configure 'EKM provider enabled', 1
GO
RECONFIGURE
GO

[5.2] REGISTER THE FXCL EKM PROVIDER
1. Open a new Query window in SQL Server Management Studio and execute the following:

CREATE CRYPTOGRAPHIC PROVIDER FxclEkmProvider
FROM FILE = 'C:\Program Files\Futurex\fxcl\kmes\ekm\libfxcl-ekm.dll';

GO

INTEGRATION GUIDE|MICROSOFT SQL SERVER

Page 16 of 20

[6] ENABLING TDE IN MICROSOFT SQL SERVER USING EKM
This section will cover the steps needed to enable transparent data encryption (TDE) in Microsoft SQL Server to
protect a database encryption key by using an asymmetric key stored on the KMES Series 3.

NOTE: All of the following commands need to be run inside a Query window in SQL Server Management Studio.

1. Create a credential that will be used by system administrators.

CREATE CREDENTIAL EkmCredential
WITH

IDENTITY = 'SqlServer',
SECRET = 'safest'

FOR CRYPTOGRAPHIC PROVIDER FxclEkmProvider;
GO

NOTE: The values set in the IDENTITY and SECRET fields should be the name and password of the user
created on the KMES that is specified in the FXCL EKM configuration file.

2. Add the credential to a high privileged user such as your own domain login in the format [DOMAIN\login[.

ALTER LOGIN [WIN-Q4E6RG9BSOL\Administrator]
ADD CREDENTIAL EkmCredential;

GO

3. Create an asymmetric key stored inside the FXCL EKM provider.

USE master;
GO
CREATE ASYMMETRIC KEY EkmAsym

FROM PROVIDER FxclEkmProvider
WITH

ALGORITHM = RSA_1024,
PROVIDER_KEY_NAME = 'EkmAsym';

GO

4. Create a credential that will be used by the Database Engine.

CREATE CREDENTIAL EkmEngineCredential
WITH

IDENTITY = 'SqlServer',
SECRET = 'safest'

FOR CRYPTOGRAPHIC PROVIDER FxclEkmProvider;
GO

NOTE: The values set in the IDENTITY and SECRET fields should be the name and password of the user
created on the KMES that is specified in the FXCL EKM configuration file.

5. Create a login that will use the asymmetric key stored inside the FXCL EKM provider.

CREATE LOGIN EkmLogin
FROM ASYMMETRIC KEY EkmAsym;

GO

6. Set the login to be able to use the database engine credential.

INTEGRATION GUIDE|MICROSOFT SQL SERVER

Page 17 of 20

ALTER LOGIN EkmLogin
ADD CREDENTIAL EkmEngineCredential;

GO

7. Create a new example database, add a table to it, then insert information into the table.

NOTE: Database encryption operations cannot be executed on master, model, tempdb, msdb, or resource
databases.

CREATE DATABASE exampleDB;
GO
USE exampleDB;
GO
CREATE TABLE users (

id INT NOT NULL PRIMARY KEY,
name VARCHAR(64),
password VARCHAR(128),
ssn VARCHAR(32)

);
GO
INSERT INTO users (id, name, password, ssn) VALUES (1, 'SomeGuy', 'blah', '000-00-0000'), (2,
'SomeGal', 'password', '000-00-0000'), (3, 'TestUser', 'test123', '000-00-0000');
GO

8. Create a database encryption key for the 'exampleDB' database.

USE exampleDB;
GO
CREATE DATABASE ENCRYPTION KEY

WITH
ALGORITHM = AES_128

ENCRYPTION BY SERVER ASYMMETRIC KEY EkmAsym;
GO

9. Enable transparent data encryption on the 'exampleDB' database.

ALTER DATABASE exampleDB
SET ENCRYPTION ON;

GO

10. Check if data can be decrypted.

NOTE: Restart SQL Server service with the KMES Series 3 offline, then check if the following command
fails. If it does, then TDE is set up correctly. If the KMES is online, the command should succeed.

USE exampleDB;
SELECT * FROM users;

INTEGRATION GUIDE|MICROSOFT SQL SERVER

Page 18 of 20

NOTE: The asymmetric key that is created on the KMES and used for encrypting the Database Encryption Key
(DEK) can be viewed on the Key Management -> Keysmenu in the KMES application interface.

INTEGRATION GUIDE|MICROSOFT SQL SERVER

Page 19 of 20

APPENDIX A: XCEPTIONAL SUPPORT

In today’s high-paced environment, we know you are looking for timely and effective resolutions for your
mission-critical needs. That is why our Xceptional Support Team does whatever it takes to ensure you have the
best experience and support possible. Every time. Guaranteed.

l 24x7x365 mission critical support
l Level 1 to level 3 support
l Extremely knowledgeable subject matter experts

At Futurex, we strive to supply you with the latest data encryption innovations as well as our best-in-class
support services. Our Xceptional Support Team goes above and beyond to meet your needs and provide you
with exclusive services that you cannot find anywhere else in the industry.

l Technical Services
l Onsite Training
l Virtual Training
l Customized Consulting
l Customized Software Solutions
l Secure Key Generation, Printing, and Mailing
l Remote Key Injection
l Certificate Authority Services

Toll-Free: 1-800-251-5112

E-mail: support@futurex.com

mailto:support@futurex.com

ENGINEERING CAMPUS

864 Old Boerne Road

Bulverde, Texas, USA 78163

Phone: +1 830-980-9782

+1 830-438-8782

E-mail: info@futurex.com

XCEPTIONAL SUPPORT

24x7x365

Toll-Free: 1-800-251-5112

E-mail: support@futurex.com

SOLUTIONS ARCHITECT

E-mail: solutions@futurex.com

mailto:info@futurex.com
mailto:support@futurex.com
mailto:solutions@futurex.com

	[1] Document Information
	[1.1] Document Overview
	[1.2] Application Description

	[2] Prerequisites
	[3] KMES Series 3 Configuration
	[3.1] Configure TLS communication between the KMES Series 3 and the Microsoft SQL Server instance
	[3.2] Create an identity for MS SQL Server and grant it the required permissions
	[3.3] Enable the Host API commands required for the Microsoft SQL Server operation
	[3.4] Grant the MS SQL Server role Use permissions on the CA tree

	[4] Install and configure Futurex Client Library (FXCL) EKM
	[4.1] Installing FXCL EKM
	[4.2] Configuring FXCL EKM

	[5] Configuring EKM in Microsoft SQL Server
	[5.1] Enable the EKM provider option
	[5.2] Register the FXCL EKM provider

	[6] Enabling TDE in Microsoft SQL Server using EKM
	APPENDIX A: XCEPTIONAL SUPPORT

