
OPENSSL ENGINE
Integration Guide

Applicable Devices:
Vectera Plus

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION PROPRIETARY TO FUTUREX, LP. ANY UNAUTHORIZED USE, DISCLOSURE, OR
DUPLICATION OF THIS DOCUMENT OR ANY OF ITS CONTENTS IS EXPRESSLY PROHIBITED.

INTEGRATION GUIDE| OPENSSL ENGINE

Page 2 of 32

TABLE OF CONTENTS

[1] DOCUMENT INFORMATION 3

[1.1] DOCUMENT OVERVIEW 3

[1.2] APPLICATION DESCRIPTION 3

[1.3] GUARDIAN INTEGRATION 3

[2] PREREQUISITES 4

[3] INSTALL FUTUREX PKCS #11 (FXPKCS11) 5

[3.1] INSTRUCTIONS FOR INSTALLING THE PKCS #11 MODULE IN LINUX 5

[4] INSTALL EXCRYPT MANAGER (IF USING WINDOWS) 6

[5] INSTALL FUTUREX COMMAND LINE INTERFACE (FXCLI) 7

[5.1] INSTALLING FXCLI IN WINDOWS 7

[5.2] INSTALLING FXCLI IN LINUX 7

[6] CONFIGURE THE FUTUREX HSM 9

[6.1] CONNECT TO THE HSM VIA THE FRONT USB PORT 10

[6.2] FEATURES REQUIRED IN HSM 12

[6.3] NETWORK CONFIGURATION (HOW TO SET THE IP OF THE HSM) 12

[6.4] ENABLE THE EDSVWUX MULTI-USAGE COMBINATION FOR ASYMMETRIC KEYS 13

[6.5] LOAD FUTUREX KEY (FTK) 15

[6.6] CONFIGURE A TRANSACTION PROCESSING CONNECTION AND CREATE AN APPLICATION PARTITION 16

[6.7] CREATE NEW IDENTITY AND ASSOCIATE IT WITH THE NEWLY CREATED APPLICATION PARTITION 19

[6.8] CONFIGURE TLS AUTHENTICATION 21

[7] EDIT THE CONFIGURATION FILE 24

[8] OPENSSL ENGINE INSTALLATION AND CONFIGURATION 26

[8.1] INSTALL LIBP11 AND OPENSC 26

[8.2] EDIT THE OPENSSL CONFIGURATION FILE 26

[9] TESTING OPENSSL ENGINE 28

[9.1] SET FXPKCS11 ENVIRONMENT VARIABLES 28

[9.2] CREATE A KEY PAIR ON THE VECTERA PLUS USING PKCS11-TOOL 28

[9.3] OPENSSL EXAMPLE COMMANDS 28

APPENDIX A: XCEPTIONAL SUPPORT 31

INTEGRATION GUIDE| OPENSSL ENGINE

Page 3 of 32

[1] DOCUMENT INFORMATION

[1.1] DOCUMENT OVERVIEW
The purpose of this document is to provide information regarding the configuration of Futurex HSMs with
OpenSSL Engine using PKCS #11 libraries. For additional questions related to your HSM, see the relevant
administrator’s guide.

[1.2] APPLICATION DESCRIPTION
From the main OpenSC - libp11 page on GitHub (https://github.com/OpenSC/libp11): "OpenSSL implements
various cipher, digest, and signing features and it can consume and produce keys. However plenty of people
think that these features should be implemented in separate hardware, like USB tokens, smart cards or
hardware security modules. Therefore OpenSSL has an abstraction layer called "engine" which can delegate
some of these features to different piece of software or hardware.

engine_pkcs11 tries to fit the PKCS#11 API within the engine API of OpenSSL. That is, it provides a gateway
between PKCS#11 modules and the OpenSSL engine API. One has to register the engine with OpenSSL and one
has to provide the path to the PKCS#11 module which should be gatewayed to. This can be done by editing the
OpenSSL configuration file, by engine specific controls, or by using the p11-kit proxy module."

[1.3] GUARDIAN INTEGRATION
The Guardian Series 3 introduces mission-critical viability to core cryptographic infrastructure, including:

l Centralize device management

l Eliminates points of failure

l Distribute transaction loads

l Group-specific function blocking

l User-defined grouping systems

Please see applicable guide for configuring HSMs with the Guardian Series 3.

https://github.com/OpenSC/libp11

INTEGRATION GUIDE| OPENSSL ENGINE

Page 4 of 32

[2] PREREQUISITES
Supported Hardware:

l Vectera Plus, 6.7.x.x and above

Supported Operating Systems:

l Linux

Other:

l OpenSSL

INTEGRATION GUIDE| OPENSSL ENGINE

Page 5 of 32

[3] INSTALL FUTUREX PKCS #11 (FXPKCS11)
In a Linux environment, to install the Futurex PKCS #11 (FXPKCS11) module you need to download a tarball of
the FXPKCS11 binaries from the Futurex Portal. Step by step installation instructions are provided below:

NOTE: The Futurex PKCS #11 module needs to be installed on the server that will be using the HSM.

[3.1] INSTRUCTIONS FOR INSTALLING THE PKCS #11 MODULE IN LINUX
Extract the appropriate tarball file for your specific Linux distribution in the desired working directory.

NOTE: For the Futurex PKCS #11 module to be accessible system-wide, it would need to be placed into
/usr/local/bin by an administrative user. If the module only needs to be utilized by the current user, then
installing into $HOME/bin would be the appropriate location.

The extracted content of the .tar file is a single fxpkcs11 directory. Inside of the fxpkcs11 directory are the
following files and directories (Only files/folders that are relevant to the installation process are included
below):

l fxpkcs11.cfg -> PKCS #11 configuration file
l x86/ - This folder contains the module files for 32-bit architecture
l x64/ - This folder contains the module files for 64-bit architecture

Within the x86 and x64 directories are two directories. One named OpenSSL-1.0.x and the other named
OpenSSL-1.1.x. Both of these OpenSSL directories contain the PKCS #11 module files, built with the respective
OpenSSL versions. These files are listed below, with short descriptions of each:

l configTest -> Program to test configuration and connection to the HSM
l libfxpkcs11.so -> PKCS #11 Library File
l PKCS11Manager -> Program to test connection and manage the HSM through the PKCS #11 library

The configTest and PKCS11Manager programs look for the fxpkcs11.cfg file at the following path:

/etc/fxpkcs11.cfg

Because of this, it is necessary either to move the fxpkcs11.cfg file from the /usr/local/bin/fxpkcs11 directory to
the /etc directory, or to set the FXPKCS11_CFG environment variable to point to the fxpkcs11.cfg file.

INTEGRATION GUIDE| OPENSSL ENGINE

Page 6 of 32

[4] INSTALL EXCRYPT MANAGER (IF USING WINDOWS)
Sections 4 and 5 of this integration guide cover the installation of Excrypt Manager and FXCLI. Excrypt Manager
is a Windows application that provides a GUI-based method for configuring the HSM, while FXCLI provides a
command-line-based method for configuring the HSM and can be installed on all platforms.

Note: If you will be configuring the Vectera Plus from a Linux computer, you can skip this section. If you will be
configuring the Vectera Plus from a Windows computer, installing FXCLI in the next section is still required
because FXCLI is the only method that can be used to configure TLS certificates in section 6.7.

Note: Install Excrypt Manager on the workstation you will use to configure the HSM.

Note: If you plan to use a Virtual HSM for the integration, all configurations will need to be performed using
either FXCLI, the Excrypt Touch, or the Guardian Series 3.

Note: The Excrypt Manager version must be from the 4.4.x branch or later to be compatible with the HSM
firmware, which must be 6.7.x.x or later.

To install Excrypt Manager, run the Excrypt Manager installer as an administrator and follow the prompts in the
setup wizard to complete the installation.

FIGURE: EXCRYPT MANAGER SETUP WIZARD

The installation wizard prompts you to specify where you want to install Excrypt Manager. The default location
is C:\Program Files\Futurex\Excrypt Manager\. After choosing a location, select [Install].

INTEGRATION GUIDE| OPENSSL ENGINE

Page 7 of 32

[5] INSTALL FUTUREX COMMAND LINE INTERFACE (FXCLI)
Note: Install FXCLI on the workstation you will use to configure the HSM.

[5.1] INSTALLING FXCLI IN WINDOWS
As mentioned in section 3, the FXTools installation package includes Futurex Client Tools (FXCLI). Similar to the
Futurex PKCS #11 (FXPKCS11) module, the easiest way to install FXCLI on Windows is by installing FXTools. You
can download FXTools from the Futurex Portal.

To install FXCLI, run the Futurex Tools installer as an administrator and follow the prompts in the setup wizard to
complete the installation.

FIGURE: FUTUREX TOOLS SETUP WIZARD

The setup wizard installs all tools on the system by default. You can override the defaults and choose not to
install certain modules. The installation provides the following services:

l Futurex Client Tools:Command Line Interface (CLI) and associated SDK for both Java and C.
l Futurex CNG Module:The Microsoft Next Generation Cryptographic Library.
l Futurex Cryptographic Service Provider (CSP):The legacy Microsoft cryptographic library.
l Futurex EKMModule:The Microsoft Enterprise Key Management library.
l Futurex PKCS #11 Module:The Futurex PKCS #11 library and associated tools.
l Futurex Secure Access Client:A client used to connect a Futurex Excrypt Touch to a local laptop through

USB, which can then connect to a remote Futurex device.

[5.2] INSTALLING FXCLI IN LINUX

Download FXCLI

You can download the appropriate FXCLI package files for your system from the Futurex Portal.

INTEGRATION GUIDE| OPENSSL ENGINE

Page 8 of 32

If the system is 64-bit, select from the files marked amd64. If the system is 32-bit, select from the files marked
i386.

If running an OpenSSL version in the 1.0.x branch, select from the files marked ssl1.0. If running an OpenSSL
version in the 1.1.x branch, select from the files marked ssl1.1.

Futurex offers the following features for FXCLI:

l Java Software Development Kit (java)
l HSM command line interface (cli-hsm)
l KMES command line interface (cli-kmes)
l Software Development Kit headers (devel)
l YAML parser used to parse bash output (cli-fxparse)

Install FXCLI

To install an rpm package, run the following command in a terminal:

$ sudo rpm -ivh [fxcl-xxxx.rpm]

To install a deb package, run the following command in a terminal:

$ sudo dpkg -i [fxcl-xxxx.deb]

Running FXCLI

To enter the HSM FXCLI prompt, run the following command in a terminal:

$ fxcli-hsm

After entering the FXCLI prompt, you can run help to list all of the available FXCLI commands.

INTEGRATION GUIDE| OPENSSL ENGINE

Page 9 of 32

[6] CONFIGURE THE FUTUREX HSM
In order to establish a connection between the PKCS #11 library and the Futurex HSM, a few configuration items
need to first be performed, which are the following:

NOTE: All of the steps in this section can be completed through either Excrypt Manager or FXCLI (if using a
physical HSM rather than a virtual HSM). Optionally, steps 4 through 6 can be completed through the Guardian
Series 3, which will be covered in Appendix A.

1. Connect to the HSM via the front USB port (NOTE: If you are using a virtual HSM for the integration you
will have to connect to it over the network either via FXCLI, the Excrypt Touch, or the Guardian Series 3)

a. Connecting via Excrypt Manager
b. Connecting via FXCLI

2. Validate the correct features are enabled on the HSM
3. Setup the network configuration
4. Enable the EDSVWUX multi-usage combination for asymmetric keys
5. Load the Futurex FTK
6. Configure a Transaction Processing connection and create a new Application Partition
7. Create a new Identity that has access to the Application Partition created in the previous step
8. Configure TLS Authentication. There are two options for this:

a. Enabling server-side authentication
b. Creating client certificates for mutual authentication

Each of these action items is detailed in the following subsections.

INTEGRATION GUIDE| OPENSSL ENGINE

Page 10 of 32

[6.1] CONNECT TO THE HSM VIA THE FRONT USB PORT
For both Excrypt Manager and FXCLI you need to connect your laptop to the front USB port on the HSM.

Connecting via Excrypt Manager

Open Excrypt Manager, click “Refresh” in the lower right-hand side of the Connection menu. Then select “USB
Connection” and click “Connect”.

Login with both default Admin identities.

The default Admin passwords (i.e. “safe”) must be changed for both of your default Admin Identities (e.g.
“Admin1” and “Admin2”) in order to load the major keys onto the HSM.

INTEGRATION GUIDE| OPENSSL ENGINE

Page 11 of 32

To do so via Excrypt Manager navigate to the Identity Management menu, select the first default Admin identity
(e.g. “Admin1”), then click the “Change Password…” button. Enter the old password, then enter the new
password twice, and click “OK”. Perform the same steps as above for the second default Admin identity (e.g.
“Admin2”).

Connecting via FXCLI

Open the FXCLI application and run the following commands:

$ connect usb
$ login user

NOTE: The "login" command will prompt for the username and password. You will need to run it twice because
you must login with both default Admin identities.

The default Admin passwords (i.e. “safe”) must be changed for both of your default Admin Identities (e.g.
“Admin1” and “Admin2”) in order to load the major keys onto the HSM.

The following FXCLI commands can be used to change the passwords for each default Admin Identity.

$ user change-password -u Admin1
$ user change-password -u Admin2

NOTE: The user change-password commands above will prompt you to enter the old and new passwords. It is
necessary to run the command twice (as shown above) because the default password must be changed for both
default Admin identities.

INTEGRATION GUIDE| OPENSSL ENGINE

Page 12 of 32

[6.2] FEATURES REQUIRED IN HSM
In order to establish a connection between the PKCS #11 Library and the Futurex HSM, the HSM must be
configured with the following features:

l PKCS #11 -> Enabled
l Command Primary Mode -> General Purpose (GP)

NOTE: For additional information about how to update features on your HSM, please refer to your HSM
Administrator’s Guide, section “Download Feature Request File”.

NOTE: Command Primary Mode = General Purpose, will enable the option to create the FTK major key in the
HSM. This key will be required to be able to use the PKCS #11 library to communicate with the HSM. For
detailed information about how to load major keys in HSMs please refer to your HSM Administrator’s Guide.

[6.3] NETWORK CONFIGURATION (HOW TO SET THE IP OF THE HSM)
For this step you will need to be logged in with an identity that has a role with permissions
Communication:Network Settings. The default Administrator role and Admin identities can be used.

Navigate to the Configuration page. There you will see the option to modify the IP configuration, as shown
below:

Alternatively, the following FXCLI command can be used to set the IP for the HSM:

$ network interface modify --interface Ethernet1 -–ip 10.221.0.10 -–netmask 255.255.255.0 –-gateway
10.221.0.1

INTEGRATION GUIDE| OPENSSL ENGINE

Page 13 of 32

NOTE: The following should be considered at this point:

l All of the remaining HSM configurations in this section can be completed using the Guardian Series 3
(please refer to Appendix A for instructions on how to do so), with the exception of the final subsection
that covers how to create connection certificates for mutual authentication.

l If you are performing the configuration on the HSM directly now, but plan to add the HSM to a Guardian
later, it may be necessary to synchronize the HSM after it is added to a Device Group on the Guardian.

l If configuration through a CLI is required for your use-case, then you should manage the HSMs directly.

[6.4] ENABLE THE EDSVWUX MULTI-USAGE COMBINATION FOR ASYMMETRIC KEYS
For this step you will need to be logged in with an identity that has a role with permissions Security:Key Settings.
The default Administrator role and Admin identities can be used.

Certain OpenSSL commands require asymmetric keys with multiple usages, which can be configured, but is not
enabled by default on the Vectera Plus.

The specific multi-usage combination that is required is EDSVWUX (i.e., all usages). It is necessary to enable this
multi-usage combination for all users, including anonymous users, due to how OpenSSL creates the keys on the
HSM.

To configure this via Excrypt Manager, navigate to the Extended Optionsmenu. In the "Usage" section, there is
the option to add a new usage combination. With Asymmetric Authorize selected in the Usage dropdown, click
the Add button.

INTEGRATION GUIDE| OPENSSL ENGINE

Page 14 of 32

Select the EDSVWUX usage combination and click "Ok".

Now select Asymmetric Anonymous in the Usage dropdown and enable the same EDSVWUX usage
combination.

Click the "Save" button on the bottom-right-hand side of the window to save the changes.

Alternatively, the following FXCLI commands can be used to add the EDSVWUX multi-usage combination for
asymmetric keys for all users:
$ multi-usage add --asymmetric --auth -e -d -s -v -w -u -x

$ multi-usage add --asymmetric --anon -e -d -s -v -w -u -x

INTEGRATION GUIDE| OPENSSL ENGINE

Page 15 of 32

[6.5] LOAD FUTUREX KEY (FTK)
For this step you will need to be logged in with an identity that has a role with permissions Major Keys:Load. The
default Administrator role and Admin identities can be used.

The FTK is used to wrap all keys stored on the HSM used with PKCS #11. If using multiple HSMs in a cluster, the
same FTK can be used for syncing HSMs. Before an HSM can be used with PKCS #11, it must have an FTK.

NOTE: This process can also be completed using FXCLI, the Excrypt Touch, or the Guardian Series 3. For more
information about how to load the FTK into an HSM using these tools/devices, please see the relevant
Administrative Guide.

After logging in, select Key Management, then “Load” under FTK. Keys can be loaded as components that are
XOR’d together, M-of-N fragments, or generated. If this is the first HSM in a cluster, it is recommended to
generate the key and save to smart cards as M-of-N fragments.

Alternatively, the following FXCLI commands can be used to load an FTK onto an HSM.

If this is the first HSM you are setting up you will need to generate a random FTK. Optionally, you can also load it
onto smart cards simultaneously with the -m and -n flags.

$ majorkey random --ftk -m [number_from_2_to_9] -n [number_from_2_to_9]

If it's a second HSM that you're setting up in a cluster then you will load the FTK from smart cards with the
following command:

$ majorkey recombine --key ftk

INTEGRATION GUIDE| OPENSSL ENGINE

Page 16 of 32

[6.6] CONFIGURE A TRANSACTION PROCESSING CONNECTION AND CREATE AN APPLICATION
PARTITION
For this step you will need to be logged in with an identity that has a role with permissions Role:Add, Role:Assign
All Permissions, Role:Modify, Keys:All Slots, and Command Settings:Excrypt. The default Administrator role and
Admin identities can be used.

NOTE: For the purposes of this integration guide you can consider the terms "Application Partition" and "Role"
to be synonymous. For more information regarding Application Partitions, Roles, and Identities, please refer to
the relevant Administrator's guide.

Configure a Transaction Processing Connection

Before an application logs in to the HSM with an authenticated user, it first connects via a “Transaction
Processing” connection to the Transaction Processing Application Partition. For this reason, it is necessary to
take steps to harden this Application Partition. The following three things need to be configured for the
Transaction Processing partition:

1. It should not have access to the “All Slots” permissions
2. It should not have access to any key slots
3. Only the PKCS #11 communication commands should be enabled

Go to Application Partitions, select the Transaction Processing Application Partition, and click Modify.

Under the "Permissions" tab, leave the top-level Keys permission checked, but uncheck the All Slots sub
permission.

Under the "Key Slots" tab you need to ensure that there are no key ranges specified. By default, the Transaction
Processing Application Partition has access to the entire range of key slots on the HSM.

Lastly, under the “Commands” tab make sure that only the following PKCS #11 Communication commands are
enabled:

l ECHO: Communication Test/Retrieve Version
l PRMD: Retrieve HSM restrictions
l RAND: Generate random data
l HASH: Retrieve device serial
l GPKM: Retrieve key table information
l GPKS: General purpose key settings get/change
l GPKR: General purpose key settings get (read-only)

Alternatively, the following FXCLI commands can be used to remove all permissions and key ranges that are
currently assigned to the Transaction Processing role and enable only the PKCS #11 Communication commands:

$ role modify --name Anonymous --clear-perms --clear-key-ranges

$ role modify --name Anonymous --add-perm "Keys" --add-perm Excrypt:ECHO --add-perm Excrypt:PRMD --
add-perm Excrypt:RAND --add-perm Excrypt:HASH --add-perm Excrypt:GPKM --add-perm Excrypt:GPKS --
add-perm Excrypt:GPKR

INTEGRATION GUIDE| OPENSSL ENGINE

Page 17 of 32

Create an Application Partition

In order for application segregation to occur on the HSM, an Application Partition must be created specifically
for your use case. Application partitions are used to segment the permissions and keys on an HSM between
applications. The process for configuring a new application partition is outlined in the following steps:

Navigate to the Application Partitions page and click the "Add" button at the bottom.

Fill in all of the fields in the Basic Information tab exactly how you see below (except for the Role Name field). In
the Role Name field, specify any name that you would like for this new Application Partition. Logins Required
should be set to “1”. Ports should be set to “Prod”. Connection Sources should be configured to “Ethernet”. The
Managed Roles field should be left blank because we’ll be specifying the exact Permissions, Key Slots, and
Commands that we want this Application Partition/Role to have access to. Lastly, the Use Dual Factor field
should be set to “Never”.

INTEGRATION GUIDE| OPENSSL ENGINE

Page 18 of 32

Under the “Permissions” tab, select the key permissions shown in the screenshot below. The Authorized
permission allows for keys that require login. The Import PKI permission allows trusting an external PKI, which is
used by some applications to allow for PKI symmetric key wrapping (It is not recommended to enable unless
using this use case). The No Usage Wrap permission allows for interoperable key wrapping without defining key
usage as part of the wrapped key (This is only recommended if exchanging keys with external entities or using
the HSM to wrap externally used keys).

Under key slots, it is recommended that you create a range of 1000 total keys (here we’ve specified the key
range 0-999), which do not overlap with another Application Partition. Within this range, there must be ranges
for both symmetric and asymmetric keys. If more keys are required by the application, configure accordingly.

Based on application requirements there are particular functions that need to be enabled on the Application
Partition in order to utilize the HSMs functionality. The commands that need to be enabled to perform the
example OpenSSL commands in the last section of the integration guide are listed below. These can be enabled
under the "Commands" tab.

INTEGRATION GUIDE| OPENSSL ENGINE

Page 19 of 32

NOTE: Additional commands may need to be enabled on the Application Partition depending on which OpenSSL
commands are being utilized in conjunction with the the pkcs11 OpenSSL engine.

PKCS #11 Communication Commands

l ECHO: Communication Test/Retrieve Version
l HASH: Retrieve device serial
l GPKM: Retrieve key table information
l GPKS: General purpose key settings get/change

Key Operations Commands

l GRSA: Generate RSA Private and Public Key
l LRSA: Load key into RSA Key Table

Data Encryption Commands

l GPSR: General purpose RSA encrypt/decrypt or sign/verify with recovery

Miscellaneous Commands

l TIME: Set the HSM internal clock

Alternatively, the following FXCLI commands can be used to create the new Application Partition and enable all
of the functions that are needed:

$ role add -–name Role_Name -–application -–key-range (0,999) -–perm "Keys:Authorized" -–perm "Key-
s:Import PKI" –-perm "Keys:No Usage Wrap"

$ role modify --name [role_name] --clear-perms --add-perm Excrypt:ECHO –-add-perm Excrypt:HASH –-
add-perm Excrypt:GPKM –-add-perm Excrypt:GPKS –-add-perm Excrypt:GRSA –-add-perm Excrypt:LRSA –-
add-perm Excrypt:GPSR –-add-perm Excrypt:TIME

[6.7] CREATE NEW IDENTITY AND ASSOCIATE IT WITH THE NEWLY CREATED APPLICATION
PARTITION
For this step you will need to be logged in with an identity that has a role with permissions Identity:Add. The
default Administrator role and Admin identities can be used.

A new identity must be created, which will need to be associated with the Application Partition created in the
previous step. To create this new identity, go to Identity Management, and click “Add”.

INTEGRATION GUIDE| OPENSSL ENGINE

Page 20 of 32

Specify a name for the new identity, and in the Roles dropdown select the name of the Application Partition
created in the previous step. This will associate the new Identity with the Application Partition that you created.

Alternatively, the following FXCLI command can be used to create a new Identity and associate it with the role
that was created:

$ identity add --name Identity_Name --role Role_Name --password safest

This new identity must be set in fxpkcs11.cfg file, in the following section:

#HSM crypto operator identity name
<CRYPTO-OPR> [insert name of identity that you created] </CRYPTO-OPR>

Production connection
<PROD-ENABLED> YES </PROD-ENABLED>
<PROD-PORT> 9100 </PROD-PORT>

NOTE: Crypto Operator in the fxpkcs11.cfg file must match exactly the name of the identity created in the HSM.

INTEGRATION GUIDE| OPENSSL ENGINE

Page 21 of 32

[6.8] CONFIGURE TLS AUTHENTICATION
For this step you will need to be logged in with an identity that has a role with permissions Keys:All Slots,
Management Commands:Certificates, Management Commands:Keys, Security:TLS Sign, and TLS Settings:Upload
Key. The default Administrator role and Admin identities can be used.

Enable Server-Side Authentication (Option 1)

Mutually authenticating to the HSM using client certificates is recommended, but server-side authentication is
also supported. To enable server-side authentication go to SSL/TLS Setup, then select the Excrypt Port and
enable the “Allow Anonymous” setting.

Alternatively, the following FXCLI command can be used to enable server-side authentication with the “Allow
Anonymous” SSL/TLS setting:

$ tls-ports set -p "Excrypt Port" --anon

Create Connection Certificates for Mutual Authentication (Option 2)

Mutually authenticating to the HSM using client certificates is recommended, and enforced by default. In the
example below, FXCLI is utilized to generate a CA that then signs the HSM server certificate and a client
certificate. The client keys and CSR are generated in Windows PowerShell with OpenSSL. For other options for
managing certificates required for mutual authentication with the HSM, please review the relevant
Administrator’s guide.

Find the FXCLI program that was installed with FXTools, and run it as an administrator.

Things to note:

l For this example, the computer running FXCLI is connected to the front port of the HSM. Remote
management is possible however, using the HSMs Web Portal, or the Excrypt Touch.

l For commands that create an output file, if you do not specify a file path (as is the case here) it will save
the file to the directory from which the FXCLI program is executed.

l Using user-generated certificates requires a PMK to be loaded on the HSM.

INTEGRATION GUIDE| OPENSSL ENGINE

Page 22 of 32

l If you run help by itself it will show a full list of available commands. You can see all of the available
options for any given command by running the command name followed by help.

Connect your laptop to the HSM via the USB port on the front, then run this command.
$ connect usb

Log in with both default Admin identities. This command will prompt for the username and pass-
word. You will need to run this command twice.
$ login user

Generate TLS CA and store it in an available key slot on the HSM
$ generate --algo RSA --bits 2048 --usage mak --name TlsCaKeyPair --slot next

Create root certificate
$ x509 sign \

--private-slot TlsCaKeyPair \
--key-usage DigitalSignature --key-usage KeyCertSign \
--ca true --pathlen 0 \
--dn 'O=Futurex\CN=Root' \
--out TlsCa.pem

Generate the server keys for the HSM
$ tls-ports request --pair "Excrypt Port" --file production.csr --pki-algo RSA

Sign the server CSR with the newly created TLS CA
$ x509 sign \

--private-slot TlsCaKeyPair \
--issuer TlsCa.pem \
--csr production.csr \
--eku Server --key-usage DigitalSignature --key-usage KeyAgreement \
--ca false \
--dn 'O=Futurex\CN=Production' \
--out TlsProduction.pem

Push the signed server PKI to the production port on the HSM
$ tls-ports set --pair "Excrypt Port" \

--enable \
--pki-source Generated \
--clear-pki \
--ca TlsCa.pem \
--cert TlsProduction.pem \
--no-anon

NOTE: The following OpenSSL commands will need to be run fromWindows PowerShell, rather than from the
FXCLI program.

Generate the client keys
$ openssl genrsa -out privatekey.pem 2048

Generate client CSR
$ openssl req -new -key privatekey.pem -out ClientPki.csr -days 365

Using FXCLI, sign the CSR that was just generated using OpenSSL.

Sign the client CSR under the root certificate that was created
$ x509 sign \
--private-slot TlsCaKeyPair \
--issuer TlsCa.pem \
--csr ClientPki.csr \
--eku Client --key-usage DigitalSignature --key-usage KeyAgreement \

INTEGRATION GUIDE| OPENSSL ENGINE

Page 23 of 32

--dn 'O=Futurex\CN=Client' \
 --out SignedPki.pem

Switch back to Windows PowerShell for the remaining commands.

Use OpenSSL to create a PKCS#12 file that can be used to authenticate, as a client, using our
PKCS #11 library
$ openssl pkcs12 -export -inkey privatekey.pem -in SignedPki.pem -certfile TlsCa.pem -out PKI.p12

INTEGRATION GUIDE| OPENSSL ENGINE

Page 24 of 32

[7] EDIT THE CONFIGURATION FILE
The fxpkcs11.cfg file allows the user to set the FXPKCS11 library to connect to the HSM. To edit, run a text
editor as an Administrator and edit the configuration file accordingly. Most notably, the fields shown below
must be set inside the <HSM> section (note that the full fxpkcs11.cfg file is not included).

NOTE: The Futurex PKCS #11 library expects the FXPKCS11 config file to be in a certain location (C:\Program
Files\Futurex\fxpkcs11\fxpkcs11.cfg for Windows and /etc/fxpkcs11.cfg for Linux), but that
location can be overwritten using an environment variable (FXPKCS11_CFG).

<HSM>
Which PKCS11 slot
<SLOT> 0 </SLOT>
<LABEL> Futurex </LABEL>

HSM crypto operator user name
<CRYPTO-OPR> [identity_name] </CRYPTO-OPR>

Connection information
<ADDRESS> 10.0.8.30 </ADDRESS>
<PROD-PORT> 9100 </PROD-PORT>
<PROD-TLS-ENABLED> YES </PROD-TLS-ENABLED>
<PROD-TLS-ANONYMOUS> NO </PROD-TLS-ANONYMOUS>

<PROD-TLS-CA> /home/user/tls/root.pem </PROD-TLS-CA>
<PROD-TLS-CA> /home/user/tls/sub1.pem </PROD-TLS-CA>
<PROD-TLS-CA> /home/user/tls/sub2.pem </PROD-TLS-CA>

<PROD-TLS-KEY> /home/user/tls/PKI.p12 </PROD-TLS-KEY>
<PROD-TLS-KEY-PASS> safest </PROD-TLS-KEY-PASS>

YES = This is communicating through a Guardian
<FX-LOAD-BALANCE> NO </FX-LOAD-BALANCE>

</HSM>

In the <SLOT> and <LABEL> fields we specify to use PKCS11 slot 0 and assign it the label "Futurex".

In the <CRYPTO-OPR> field, the name of the identity that was created for the application partition needs to be
specified.

In the <ADDRESS> field, the IP of the HSM that the PKCS #11 library will connect to is specified.

The <PROD-PORT> field declares that the PKCS #11 library will connect to Production port 9100.

The <PROD-TLS-ANONYMOUS> field defines whether the PKCS #11 library will be authenticating to the server or
not.

The <PROD-TLS-KEY> field defines the location of the client private key. Supported formats for the TLS private
key are PKCS #1 clear private keys, PKCS #8 encrypted private keys, or a PKCS #12 file that contains the private
key and certificates encrypted under the password specified in the <PROD-TLS-KEY-PASS> field.

Because a PKCS #12 file is defined in the <PROD-TLS-KEY> field in this example, it is not necessary to define the
signed client cert with the <PROD-TLS-CERT> tag, or the CA cert/s with one or more instances of the <PROD-TLS-
CA> tag.

If a Guardian is being used to manage HSMs in a cluster, the <FX-LOAD-BALANCE> field must be defined as
“YES”. If a Guardian is not being used it should be set to “NO”.

INTEGRATION GUIDE| OPENSSL ENGINE

Page 25 of 32

Once the fxpkcs11.cfg is edited, run the PKCS11Manager file to test the connection against the HSM, and
check the fxpkcs11.log for errors and information. For more information, refer to the Futurex PKCS #11
technical reference found on the Futurex Portal.

INTEGRATION GUIDE| OPENSSL ENGINE

Page 26 of 32

[8] OPENSSL ENGINE INSTALLATION AND CONFIGURATION
This section will cover the installation and configuration of libp11, OpenSC, and the pkcs11 engine plugin for the
OpenSSL library. An overview of these three libraries is provided below:

l libp11 provides a higher-level (compared to the PKCS#11 library) interface to access PKCS#11 objects. It is
designed to integrate with applications that use OpenSSL.

l OpenSC provides a set of libraries and utilities to work with smart cards. Its main focus is on cards that
support cryptographic operations, and facilitate their use in security applications such as authentication,
mail encryption and digital signatures.

l pkcs11 engine plugin for the OpenSSL library allows accessing PKCS#11 modules in a semi-transparent
way.

[8.1] INSTALL LIBP11 AND OPENSC
1. In a terminal, run the following sequence of commands to install libp11 and OpenSC:

sudo apt update
sudo apt install libengine-pkcs11-openssl
sudo apt install opensc

[8.2] EDIT THE OPENSSL CONFIGURATION FILE
1. Run the following command to determine the location of the OpenSSL configuration file for the logged in

user:

openssl version -d

NOTE: If you prefer to edit your global OpenSSL configuration file, it's location is most often in
/etc/ssl/openssl.cnf.

2. Open in a text editor the openssl.cnf file that is inside of the OpenSSL directory determined from the
previous command.

This line must be placed at the top, before any sections are defined:

openssl_conf = openssl_init

This needs be added to the bottom of the file:

[openssl_init]
engines=engine_section
[engine_section]
pkcs11 = pkcs11_section
[pkcs11_section]
engine_id = pkcs11
dynamic_path = /usr/lib/x86_64-linux-gnu/engines-1.1/pkcs11.so
MODULE_PATH = /usr/local/bin/fxpkcs11/libfxpkcs11.so
PIN = "safest"
init = 1

INTEGRATION GUIDE| OPENSSL ENGINE

Page 27 of 32

NOTE: The value set for MODULE_PATH needs to be specific to where the Futurex PKCS #11 module is
installed on your system.

NOTE: The password of the identity created on the Vectera Plus needs to be set in the PIN field.

INTEGRATION GUIDE| OPENSSL ENGINE

Page 28 of 32

[9] TESTING OPENSSL ENGINE

[9.1] SET FXPKCS11 ENVIRONMENT VARIABLES
In a terminal, run the following sequence of commands to set the required FXPKCS11 environment variables:

export FXPKCS11_MODULE=/path/to/libfxpkcs11.so;
export FXPKCS11_CFG=/path/to/fxpkcs11.cfg;

[9.2] CREATE A KEY PAIR ON THE VECTERA PLUS USING PKCS11-TOOL
In a terminal, run the following command to create a new key pair on the Vectera Plus using pkcs11-tool:

pkcs11-tool --module $FXPKCS11_MODULE --login --keypairgen --key-type rsa:2048 --label "my_rsa2048_
key" --id "123456" --usage-sign --usage-decrypt

Enter the password of the identity configured in the fxpkcs11.cfg file when prompted for the User PIN. If the
command is successful the keys will be listed in the output, as shown below:

Key pair generated:
Private Key Object; RSA

label: my_rsa2048_key
ID: 123456
Usage: decrypt, sign, unwrap
Access: sensitive, local

Public Key Object; RSA 2048 bits
label: my_rsa2048_key
ID: 123456
Usage: encrypt, verify, wrap
Access: local

One private RSA 2048 key was created with asymmetric sign & verify usage, and one public RSA 2048 key was
created with verify usage. These keys will be used in the test OpenSSL commands in the next section.

[9.3] OPENSSL EXAMPLE COMMANDS
Below are several OpenSSL example commands, most of which use the keys created on the Vectera Plus in the
previous section. In all of the commands that utilize the keys created on the HSM, the pkcs11 OpenSSL engine is
specified.

NOTE: The purpose of this section is not to provide an exhaustive list of OpenSSL commands that can be run
using the pkcs11 OpenSSL Engine, but rather to give a few examples of use-cases and confirm that everything is
configured correctly. Please refer to OpenSSL's documentation for the full list of compatible commands.

Example 1: Output the public key from the HSM

In a terminal, run the following command to output the public key from the HSM:

openssl rsa -engine pkcs11 -pubout -inform engine -in "pkcs11:object=my_rsa2048_key"

If the command is successful it should output the public key to screen, similar to what is shown below:

https://www.openssl.org/docs/

INTEGRATION GUIDE| OPENSSL ENGINE

Page 29 of 32

engine "pkcs11" set.
writing RSA key
-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAoqFl+qYGJ9ou+tycLDCm
7RSTKxYcytiqA2yD3WGfrd72X8iAkuB2QL/IF/Kande1gSRaCTs5vnC0JZ9SP0nU
J3bY9b0GfXKR5kJsQGdQOKs29m0kyHjge7QRT6rfZuHhj8TRfqpPNzNnZU9MflMx
85XlTLE2HUV+e1vKHfkFC1gQrULDQ1ROb8HZKe13k7SIv4iMOZrswq7qgvyFFWOV
3Kn27yNsAKORMAoEPEwc5hre3rwJrP/W9I+EfFPDtMzI7wWPaQork3AE+bV3c8Dd
+Iv7fnXKPjK/n+4ctjnMfeTT/tG99ShkhkJkHRqGr4VNFv34hOQlwcJYr6NLrCA4
EQIDAQAB
-----END PUBLIC KEY-----

Example 2: Encrypt data with the public key and decrypt with the HSM stored private key

In a terminal, run the following command to generate a file called "clear_data" containing random ASII data:

echo "This is a test file" > ./clear_data

Retrieve the public key from the HSM.

openssl rsa -engine pkcs11 -inform ENGINE -in "pkcs11:object=my_rsa2048_key" -pubout -outform PEM -
out pubkey.pem

Encrypt the "clear_data" file using the public key retrieved from the HSM and output the results to a file called
"encrypted_data".

openssl pkeyutl -pubin -inkey pubkey.pem -in ./clear_data -encrypt -out ./encrypted_data -pkeyopt
rsa_padding_mode:oaep

Decrypt the "encrypted_data" file using the HSM stored private key and output the results to a file called "clear_
data2".

openssl pkeyutl -engine pkcs11 -keyform engine -inkey "pkcs11:object=my_rsa2048_key" -decrypt -in
./encrypted_data -out ./clear_data2 -pkeyopt rsa_padding_mode:oaep

Confirm that the contents of the "clear_data" and "clear_data2" files are identical.

diff clear_data clear_data2

Example 3: Sign a data file using the HSM stored private key and verify the signature using the public
key

Sign the "clear_data" file using the HSM stored private key and output the signature to a file called "clear_
data.sig".

openssl pkeyutl -engine pkcs11 -keyform engine -inkey "pkcs11:object=my_rsa2048_key" -sign -in
./clear_data -out ./clear_data.sig

Verify the signature using the public key.

openssl pkeyutl -pubin -inkey pubkey.pem -verify -in ./clear_data -sigfile ./clear_data.sig

A message should be output to the screen confirming that the signature was verified successfully.

INTEGRATION GUIDE| OPENSSL ENGINE

Page 30 of 32

Example 4: Create a Self-Signed Root Certificate Authority (CA)

Generate a self-signed CA certificate with the HSM stored private key.

openssl req -new -x509 -engine pkcs11 -keyform engine -key "pkcs11:object=my_rsa2048_key" -out ssl-
ca-cert.pem -days 365

It will prompt for information about the self-signed CA certificate. Once all fields have been entered, it will
output to a file called "ssl-ca-cert.pem".

Example 5: Generate a Certificate Signing Request (CSR)

Generate a CSR with the HSM stored private key.

openssl req -new -engine pkcs11 -keyform engine -key "pkcs11:object=my_rsa2048_key" -out ssl-cli-
ent-cert-req.pem -days 365

It will prompt for information about the certificate. Once all fields have been entered, the certificate signing
request will be output to a file called "ssl-client-cert-req.pem".

Example 6: Sign a CSR using the HSM stored private key

Sign a CSR using the HSM stored private key.

openssl x509 -req -engine pkcs11 -in ssl-client-cert-req.pem -CA ssl-ca-cert.pem -CAkeyform engine
-CAkey "pkcs11:object=my_rsa2048_key" -CAcreateserial -out signed-client-cert.pem -days 365

The signed certificate will be output to a file called "signed-client-cert.pem".

INTEGRATION GUIDE| OPENSSL ENGINE

Page 31 of 32

APPENDIX A: XCEPTIONAL SUPPORT

In today’s high-paced environment, we know you are looking for timely and effective resolutions for your
mission-critical needs. That is why our Xceptional Support Team does whatever it takes to ensure you have the
best experience and support possible. Every time. Guaranteed.

l 24x7x365 mission critical support
l Level 1 to level 3 support
l Extremely knowledgeable subject matter experts

At Futurex, we strive to supply you with the latest data encryption innovations as well as our best-in-class
support services. Our Xceptional Support Team goes above and beyond to meet your needs and provide you
with exclusive services that you cannot find anywhere else in the industry.

l Technical Services
l Onsite Training
l Virtual Training
l Customized Consulting
l Customized Software Solutions
l Secure Key Generation, Printing, and Mailing
l Remote Key Injection
l Certificate Authority Services

Toll-Free: 1-800-251-5112

E-mail: support@futurex.com

mailto:support@futurex.com

ENGINEERING CAMPUS

864 Old Boerne Road

Bulverde, Texas, USA 78163

Phone: +1 830-980-9782

+1 830-438-8782

E-mail: info@futurex.com

XCEPTIONAL SUPPORT

24x7x365

Toll-Free: 1-800-251-5112

E-mail: support@futurex.com

SOLUTIONS ARCHITECT

E-mail: solutions@futurex.com

mailto:info@futurex.com
mailto:support@futurex.com
mailto:solutions@futurex.com

	[1] Document Information
	[1.1] Document overview
	[1.2] Application Description
	[1.3] Guardian Integration

	[2] Prerequisites
	[3] Install Futurex PKCS #11 (FXPKCS11)
	[3.1] Instructions For Installing the PKCS #11 module in Linux

	[4] Install Excrypt Manager (If Using Windows)
	[5] Install Futurex Command Line Interface (FXCLI)
	[5.1] Installing FXCLI in Windows
	[5.2] Installing FXCLI in Linux

	[6] Configure the Futurex HSM
	[6.1] Connect to the HSM via the Front USB Port
	[6.2] Features Required in HSM
	[6.3] Network Configuration (How To Set the IP of the HSM)
	[6.4] Enable the EDSVWUX multi-usage combination for asymmetric keys
	[6.5] Load Futurex Key (FTK)
	[6.6] Configure a Transaction Processing Connection and Create an Application Partition
	[6.7] Create New Identity and Associate it with the Newly Created Application Partition
	[6.8] Configure TLS Authentication

	[7] Edit the Configuration File
	[8] OpenSSL Engine Installation and Configuration
	[8.1] Install libp11 and OpenSC
	[8.2] Edit the OpenSSL configuration file

	[9] Testing OpenSSL Engine
	[9.1] Set FXPKCS11 environment variables
	[9.2] Create a key pair on the Vectera Plus using pkcs11-tool
	[9.3] OpenSSL Example Commands

	APPENDIX A: XCEPTIONAL SUPPORT

