
ORACLE DATABASE 19C TRANSPARENT DATA
ENCRYPTION
Integration Guide

Applicable Devices:
KMES Series 3

THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION PROPRIETARY TO FUTUREX, LP. ANY UNAUTHORIZED USE, DISCLOSURE, OR
DUPLICATION OF THIS DOCUMENT OR ANY OF ITS CONTENTS IS EXPRESSLY PROHIBITED.

INTEGRATION GUIDE| ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION

Page 2 of 25

TABLE OF CONTENTS

[1] DOCUMENT INFORMATION 3

[1.1] DOCUMENT OVERVIEW 3

[2] ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION (TDE) INTEGRATION OVERVIEW 4

[3] PREREQUISITES 5

[4] CONFIGURING THE FUTUREX PKCS #11 LIBRARY IN ORACLE 6

[4.1] COPY THE FUTUREX PKCS #11 LIBRARY TO THE REQUIRED PATH 6

[5] KMES SERIES 3 CONFIGURATION 7

[5.1] CRYPTO OPERATOR GROUP AND USERS 7

[5.2] CREATE THE KEY GROUP FOR ORACLE TDE KEYS 7

[5.3] ENABLE THE HOST API COMMANDS REQUIRED FOR THE ORACLE TDE OPERATION 8

[5.4] CONFIGURE TLS COMMUNICATION BETWEEN THE KMES SERIES 3 AND THE ORACLE DATABASE INSTANCE 9

[6] EDIT THE FUTUREX PKCS #11 CONFIGURATION FILE 15

[7] GENERATE A TDE MASTER ENCRYPTION KEY ON THE KMES SERIES 3 17

[7.1] STANDARD IMPLEMENTATION 17

[7.2] DOCKER CONTAINER IMPLEMENTATION 19

[8] OPENING THE WALLET/HARDWARE KEYSTORE 22

[8.1] MANUAL OPTION 22

[8.2] AUTOMATIC OPTION 22

APPENDIX A: XCEPTIONAL SUPPORT 24

INTEGRATION GUIDE| ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION

Page 3 of 25

[1] DOCUMENT INFORMATION

[1.1] DOCUMENT OVERVIEW
This document provides information about the integration of the Futurex KMES Series 3 with Oracle Database
19c Transparent Data Encryption (TDE) using Futurex PKCS #11 libraries. For additional questions related to the
KMES Series 3, see the relevant user guide.

[1.1.1] ABOUT ORACLE TDE

From the Oracle documentation website: “Transparent data encryption enables you to encrypt sensitive data,
such as credit card numbers, stored in table columns. Encrypted data is transparently decrypted for a database
user who has access to the data. Transparent data encryption helps protect data stored on media in the event
that the storage media or data file gets stolen.”

INTEGRATION GUIDE| ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION

Page 4 of 25

[2] ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION (TDE) INTEGRATION
OVERVIEW
Integrating Oracle Database 19c Transparent Data Encryption (TDE) with the KMES Series 3 requires the Futurex
PKCS #11 (FXPKCS11) library. Once configured, the Master Encryption Key (MEK) used for TDE can be stored
within the confines of a FIPS 140-2 Level 3 validated HSM (i.e., the KMES Series 3), adding a layer of protection
for data-at-rest.

The Master Encryption Key encrypts the Oracle Table Keys, which encrypt or decrypt columns or tablespaces
locally in the database. Each table has its own table key. From the client application perspective, the encryption
and decryption process is transparent, so there is no need to make any changes to the existing application.

The connection between the Futurex PKCS #11 library and the KMES Series 3 must be a mutually authenticated
TLS connection. Therefore, TLS/SSL certificates must be created (which will be done using OpenSSL and a CA on
the KMES itself) to provide certificates for both the KMES Host API connection pair and the Oracle Database
instance where the FXPKCS11 library is running. This guide is intended to provide the user with the required
information to configure Futurex PKCS #11 with Oracle Database so that the TDE Master Encryption Key can be
generated and stored on the KMES Series 3 to be used for encrypting the Oracle Table Keys. This process is
summarized in the following image:

FIGURE: PROCESS OF ORACLE TDE INTEGRATION

INTEGRATION GUIDE| ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION

Page 5 of 25

[3] PREREQUISITES
1. Linux Server (Rocky Linux 8 for this example – GUI not required): https://rockylinux.org/download/
2. OpenSSL for Linux
3. Oracle Database 19c
4. Installation Guide for Oracle Database 19c: https://docs.oracle.com/en/database/oracle/oracle-

database/19/index.html
5. Oracle Guide to securing data with Oracle TDE (General concepts – how to enable TDE):

https://docs.oracle.com/en/database/oracle/oracle-database/19/asoag/introduction-to-transparent-
data-encryption.html

6. Oracle Guide to use HSM with TDE: https://docs.oracle.com/en/database/oracle/oracle-
database/19/asoag/configuring-transparent-data-encryption.html#GUID-753C4808-CC51-4DA1-A5C3-
980417FDAB14

7. KMES Series 3 with minimum software version 6.1.2.4–ck6a85 and Futurex-signed TLS certificates
preloaded

8. TLS client certificates to allow the Futurex PKCS #11 (FXPKCS11) library to connect with the KMES Series 3.
Refer to the section on the KMES Series 3 TLS certificates and FXPKCS11 certificates and the section on
the FXPKCS11 configuration file for additional details.

9. Futurex PKCS #11 (FXPKCS11) library version 4.34 or above

Note: For the purposes of this document, we assume that the Linux server is running, the user has root
permissions, and has installed the Oracle database with the necessary configurations to support TDE
beforehand.

This guide shows users how to configure the Futurex PKCS #11 library to be used as an interface for Oracle TDE
to connect to a KMES Series 3 HSM wallet, based on: https://docs.oracle.com/en/database/oracle/oracle-
database/19/asoag/configuring-transparent-data-encryption.html

https://rockylinux.org/download/
https://docs.oracle.com/en/database/oracle/oracle-database/19/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/asoag/introduction-to-transparent-data-encryption.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/asoag/introduction-to-transparent-data-encryption.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/asoag/configuring-transparent-data-encryption.html#GUID-753C4808-CC51-4DA1-A5C3-980417FDAB14
https://docs.oracle.com/en/database/oracle/oracle-database/19/asoag/configuring-transparent-data-encryption.html#GUID-753C4808-CC51-4DA1-A5C3-980417FDAB14
https://docs.oracle.com/en/database/oracle/oracle-database/19/asoag/configuring-transparent-data-encryption.html#GUID-753C4808-CC51-4DA1-A5C3-980417FDAB14
https://docs.oracle.com/en/database/oracle/oracle-database/19/asoag/configuring-transparent-data-encryption.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/asoag/configuring-transparent-data-encryption.html

INTEGRATION GUIDE| ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION

Page 6 of 25

[4] CONFIGURING THE FUTUREX PKCS #11 LIBRARY IN ORACLE
Note: If you plan to run Oracle Database in a Docker container, skip this section. A later section covers the steps
to configure the Futurex PKCS #11 library specific to a container implementation.

[4.1] COPY THE FUTUREX PKCS #11 LIBRARY TO THE REQUIRED PATH
1. Copy the Futurex PKCS #11 library file (i.e., libfxpkcs11.so) to the path /opt/oracle/extapi/

[32,64]/hsm/futurex/X.X/ where X.X is the library version.

2. Copy the PKCS11Manager and fxpkcs11.cfg files into the /etc directory.

INTEGRATION GUIDE| ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION

Page 7 of 25

[5] KMES SERIES 3 CONFIGURATION
The first half of this section covers general KMES Series 3 configurations you must make for Oracle Database to
store the TDE Master Encryption Key on the KMES. The second half of this section covers the steps to configure
TLS communication between the KMES Series 3 and the Oracle Database instance.

[5.1] CRYPTO OPERATOR GROUP AND USERS
Users must create a new group (as an example: Crypto Operators which will include a Crypto1 user and their
credentials). The Futurex PKCS #11 library can access the KMES Series 3 with any user created within the group.

Note: The Crypto1 user will later be configured in the fxpkcs11.cfg file to allow the FXPKCS11 library to connect
to the KMES Series 3.

To define the Crypto Operators group and user(s), complete the following sequence:

1. Log in to KMES Series 3 with a user that has privileges to Add/Modify user groups.
2. Select Users > Admin Group. Right-click Add Group.
3. Set:

l Group nameto CryptoOperators

l Number of users required to log in to 1

l User type to Normal Users

l Members can Authenticate to to Client, Host API

4. Select the following permissions:

l Manage Certificates > All

l Manage Keys > All

l Manage Encryption Device Groups > All

l Perform Cryptographic operations > All

5. Go to Users > CryptoOperator Group. Right-click Add User.
6. Enter a username (Crypto1 as an example).
7. Enter a password for this user (safest as an example). This password will be required later.

[5.2] CREATE THE KEY GROUP FOR ORACLE TDE KEYS
A key group must be created for the Oracle TDE – KMES Series 3 integration. This key group will contain the
created or renewed Master Keys for Oracle TDE.

Note: The name of the key group can be anything, but remember the name because it will need to be
configured later inside the <KEYGROUP-NAME> tag in the fxpkcs11.cfg file.

To create the key group, complete the following steps:

1. Log in to KMES Series 3 with a user with privileges to Add/Modify key groups.
2. Select Keys. Right-click Add Key Group.

INTEGRATION GUIDE| ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION

Page 8 of 25

3. Set the following details:
l Name to OracleTDE (as an example)
l OwnerGroup to CryptoOperators (the name of the previously created user group)
l Permissions to the following:

l AdminGroup: Add, implicit
l CryptoOperator: Add

The crypto user (Crypto1 in this example) and the key group name (OracleTDE in this example) will be required
in following fields in the fxpkcs11.cfg file:

KMES in first slot
<KMS>

Which PKCS11 slot
<SLOT> 0 </SLOT>

Login username
<CRYPTO-OPR> Crypto1 </CRYPTO-OPR>

Key group name
<KEYGROUP-NAME> OracleTDE </KEYGROUP-NAME>

[5.3] ENABLE THE HOST API COMMANDS REQUIRED FOR THE ORACLE TDE OPERATION
Because the connection to the FXPKCS11 library will use the Host API port, users must define which commands
are enabled for execution by the FXPKCS11 library. To set the enabled commands, complete the following steps:

1. Log in to KMES Series 3 with privileges to modify Host API configuration.
2. Select Configuration > Host API Options, enable the commands listed below:

l ECHO: Communication Test/Retrieve Version

l RAFA: Filter Issuance Policy

l RKCK: Create Key

l RKCP: Get Command Permissions

l RKCS: Create Symmetric Key Group

l RKED: Encrypt or Decrypt Data

l RKLN: Lookup Objects

l RKLO: Login User

l RKRC: Get Key

3. Select Save

INTEGRATION GUIDE| ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION

Page 9 of 25

[5.4] CONFIGURE TLS COMMUNICATION BETWEEN THE KMES SERIES 3 AND THE ORACLE
DATABASE INSTANCE

[5.4.1] Create a Certificate Authority (CA)

1. Log in to the KMES Series 3 application interface with the default Admin identities.

2. Select Certificate Authorities in the left menu, then select Add CA.... at the bottom of the page.

3. In the Certificate Authority dialog, enter a name for the Certificate Container, leave all other fields as the
default values, and select OK.

4. The Certificate Container that was just created should appear in the Certificate Authorities menu.

5. Right-click on the Certificate Container and select Edit.... In the Certificate Authority dialog, check the box
that says Can be used for PKI authentication, and select OK to save.

6. Right-click on the Certificate Container again and select Add Certificate > New Certificate...

7. In the Subject DN tab, set a common name for the certificate, such as System TLS CA Root.

8. In the Basic Info tab, change the Major key to the PMK. You can leave all other settings as the default
values.

9. In the V3 Extensions tab, select the Example Certificate Authority profile, and select OK.

10. The root CA certificate is now listed under the previously created Certificate Container.

[5.4.2] Generate a CSR for the System/Host API connection pair

1. Go to Configuration > Network Options.

2. In the Network Options dialog, select TLS/SSL Settings.

INTEGRATION GUIDE| ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION

Page 10 of 25

3. Under the System/Host API connection pair, uncheck Use Futurex certificates and select Edit... next to PKI
keys.

4. In the Application Public Keys dialog, select Generate...

5. A warning will appear stating that SSL will not be functional until you import new certificates. Select Yes to
continue.

6. In the PKI Parameters dialog, change the Encrypting key to the PMK and the Key Size to 2048, then select
OK.

7. The PKI Key Pair should load in the Application Public Keys dialog. Select Request...

8. In the Subject DN tab, set a common name for the certificate, such as KMES.

9. In the V3 Extensions tab, select the Example TLS Server Certificate profile.

10. In the PKCS #10 Info tab, select a save location for the CSR and select OK.

11. A message should appear stating that the certificate signing request was successfully written to the
selected file location. Select OK.

12. Select OK to save the Application Public Keys settings.

13. In the main Network Options dialog, it should now say Loaded next to PKI keys for the System/Host API
connection pair.

INTEGRATION GUIDE| ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION

Page 11 of 25

[5.4.3] Sign the System/Host API CSR

1. Open the Certificate Authorities menu.

2. Right-click on the System TLS CA Root certificate and select Add Certificate > From Request...

3. In the file browser, find and select the CSR for the System/Host API connection pair.

4. You don't need to modify any of the settings for the certificate once loaded. Select OK.

5. The signed System/Host API certificate should show under the root CA certificate on the Certificate
Authorities page.

[5.4.4] Export the Root CA certificate

1. Open the Certificate Authorities menu.

2. Right-click on the System TLS CA Root certificate and select Export > Certificate(s)...

3. In the Export Certificate dialog, change the encoding to PEM, then select Browse...

4. In the file browser, select the location where you want to save the root CA Certificate. Specify tls_ca.pem
as the name for the file and select Open.

5. Select OK. A message box should open stating that the PEM file was successfully written to the location
you specified.

[5.4.5] Export the signed System/Host API certificate

1. Open the Certificate Authorities menu.

2. Right-click on the KMES certificate and select Export > Certificate(s)...

3. In the Export Certificate dialog, change the encoding to PEM and select Browse...

4. In the file browser, select the location where you want to save the signed System/Host API certificate.
Specify a name for the file, then click Open.

5. Select OK. A message box should pop up stating that the PEM file was successfully written to the location
that you specified.

INTEGRATION GUIDE| ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION

Page 12 of 25

[5.4.6] Load the exported certificates into the System/Host API connection pair

1. Go to Configuration > Network Options.

2. In the Network Options dialog, select TLS/SSL Settings.

3. Select Edit... next to Certificates in the User Certificates section.

4. Right-click on the System/Host API SSL CA X.509 Certificate Container, then select Import...

5. Click Add... at the bottom of the Import Certificates dialog.

6. In the file browser, select both the root CA certificate and the signed System/Host API certificate, then
select Open. The certificate chain should appear as shown below:

7. Select OK to save changes. In the Network Options dialog, the System/Host API connection pair should say
Signed loaded next to Certificates in the User Certificates section, as shown below:

8. Select OK to save and exit the Network Options dialog.

INTEGRATION GUIDE| ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION

Page 13 of 25

[5.4.7] Generate a private key and certificate signing request for the Oracle Database instance using
OpenSSL

Note: You must run the commands in this section from a terminal application that has OpenSSL installed.

1. Open a terminal and run the following command to generate a private key for the Oracle Database
instance:

$ openssl genrsa -out tls_skey.pem 2048

The private key will output to a file named tls_skey.pem in the current working directory.

2. Run the following command to generate a Certificate Signing Request (CSR) for the Oracle Database
instance:

$ openssl req -new -key tls_skey.pem -out tls_cert_req.pem -days 365

The command will prompt you to enter certificate information. Press Enter at every prompt to set the
default value for every field.

The CSR will output to a file named tls_cert_req.pem in the current working directory.

3. Move or copy the CSR file (i.e., tls_cert_req.pem) to the storage medium configured on the KMES.

[5.4.8] Sign the Certificate Signing Request (CSR) for the Oracle Database instance

1. Open the Certificate Authorities menu.

2. Right-click on the System TLS CA Root certificate and select Add Certificate -> From Request...

3. In the file browser, find and select the Oracle Database CSR. Certificate information will populate in the
Create X.509 From CSR window.

4. In the Subject DN tab, change the preset dropdown to Classic, and set a common name for the certificate,
such as Oracle TDE.

5. All settings in the Basic Info tab can be left as the default values.

6. In the V3 Extensions tab, select the Example TLS Client Certificate profile and select OK.

7. The signed Oracle TDE certificate is listed now under the System TLS CA Root certificate.

INTEGRATION GUIDE| ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION

Page 14 of 25

[5.4.9] Export the signed Oracle TDE certificate

1. Open the Certificate Authorities menu.

2. Right-click on the Oracle TDE certificate and select Export -> Certificate(s)...

3. In the Export Certificate dialog, change the encoding to PEM and select Browse...

4. In the file browser, navigate to the location where you want to save the Oracle TDE certificate. Specify tls_
cert.pem as the name for the file, and select Open.

5. Select OK. A message box should appear stating that the PEM file was successfully written to the location
you specified.

Note: You must move both the Oracle TDE certificate and the System TLS CA Root certificate to the computer
running the Oracle Database instance. In the next section, the certificates will be configured inside the Futurex
PKCS #11 configuration file and used for TLS communication with the KMES Series 3.

INTEGRATION GUIDE| ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION

Page 15 of 25

[6] EDIT THE FUTUREX PKCS #11 CONFIGURATION FILE
Note: If you plan to run Oracle Database in a Docker container, skip this section. A later section covers the steps
to configure the Futurex PKCS #11 configuration file specific to a container implementation.

The Futurex PKCS #11 configuration file (i.e., fxpkcs11.cfg) is used by the Futurex PKCS #11 library to connect to
the KMES. It enables the user to modify certain configurations and set connection details. This section covers
the <KMS> portion of the FXPKCS11 config file, where the connection details are set.

Note: By default, the FXPKCS11 library looks for the configuration file at C:\Program
Files\Futurex\fxpkcs11\fxpkcs11.cfg for Windows and /etc/fxpkcs11.cfg for Linux. Alternatively, the FXPKCS11_
CFG environment variable can be set to the location of the fxpkcs11.cfg file.

Open the fxpkcs11.cfg file in a text editor as an administrator and edit it accordingly.

<KMS>
Which PKCS11 slot
<SLOT> 0 </SLOT>
<LABEL> Futurex </LABEL>

HSM crypto operator user name
<CRYPTO-OPR> Crypto1 </CRYPTO-OPR>

Key group name
<KEYGROUP-NAME> OracleTDE </KEYGROUP-NAME>

Connection information
<ADDRESS> 10.0.8.30 </ADDRESS>
<PROD-PORT> 2001 </PROD-PORT>
<PROD-TLS-ENABLED> YES </PROD-TLS-ENABLED>
<PROD-TLS-ANONYMOUS> NO </PROD-TLS-ANONYMOUS>
<PROD-TLS-CA> /home/oracle/pki/tls_ca.pem </PROD-TLS-CA>
<PROD-TLS-CERT> /home/oracle/pki/tls_cert.pem </PROD-TLS-CERT>
<PROD-TLS-KEY> /home/oracle/pki/tls_skey.pem </PROD-TLS-KEY>
#<PROD-TLS-KEY-PASS> safest </PROD-TLS-KEY-PASS>

YES = This is communicating through a Guardian
<FX-LOAD-BALANCE> NO </FX-LOAD-BALANCE>

</KMS>

The <SLOT> and <LABEL> fields specify PKCS11 slot 0 and the label Futurex.

In the <CRYPTO-OPR> field, specify the name of the user you created on the KMES.

In the <KEYGROUP-NAME> field, specify the name of the key group that you created on the KMES.

In the <ADDRESS> field, specify the IP address of the KMES that the FXPKCS11 library should connect to.

In the <PROD-PORT> field, specify port 2001, which is the System/Host API port on the KMES.

The <PROD-TLS-ENABLED> field should be set to YES.

The <PROD-TLS-ANONYMOUS> field should be set to NO.

In the <PROD-TLS-CA> field, specify the path to where the tls_ca.pem file is saved.

In the <PROD-TLS-CERT> field, specify the path to where the tls_cert.pem file is saved.

In the <PROD-TLS-KEY> field, specify the path to where the tls_skey.pem file is saved.

INTEGRATION GUIDE| ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION

Page 16 of 25

The <PROD-TLS-KEY-PASS> field should remain commented out because a password was not set for the client
private key.

If you use Guardian to manage HSMs in a cluster, define the <FX-LOAD-BALANCE>field as YES. Otherwise, set it
to NO.

After you finish editing the fxpkcs11.cfg file, run the PKCS11Manager file to test the connection against the HSM
and check the fxpkcs11.log for errors and information. For more information, refer to the Futurex PKCS #11
technical reference found on the Futurex Portal.

INTEGRATION GUIDE| ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION

Page 17 of 25

[7] GENERATE A TDE MASTER ENCRYPTION KEY ON THE KMES SERIES 3
To configure Oracle Database 19c TDE with an HSM, we recommend that you refer to the Oracle knowledge
base article below:

l Oracle Database 19c: https://docs.oracle.com/en/database/oracle/oracle-
database/19/asoag/configuring-transparent-data-encryption.html

This section walks through a very basic example of configuring Oracle TDE with an HSM using PKCS #11.
However, there are many nuances in an Oracle Database environment, so the following steps will not apply
directly to certain situations and implementations. Use this section only as a general guide, and thoroughly
consult the Oracle documentation linked above before implementing Oracle TDE with an HSM in your
environment.

To use HSM-based encryption, a Master Encryption Key (MEK) must be generated, which will be stored on the
KMES, and used by TDE for encrypting and decrypting the Oracle Table Keys.

Two different Oracle Database implementations are covered in this section. A standard implementation of
Oracle Database running on a server or desktop, and an Oracle Database implementation running in a Docker
container.

[7.1] STANDARD IMPLEMENTATION
1. Set the Oracle environment with the following commands:

Note: The oraenv tool sets up the Oracle database environment for the current session and allows use of
the sqlplus command. To set the Oracle environment, follow the command sequence below. When
prompted, specify the system ID (SID) for the instance — "orcl" in this example — or use the default value
indicated between the brackets in line 4 below. All instances on the system will require a unique SID.

$ su oracle

$ cd ~

$. /usr/local/bin/oraenv
ORACLE_SID = [oracle] ? orcl

Upon success, the command will return the following message:

The Oracle base has been set to /home/oracle/app/oracle

2. Connect to the database:

$ sqlplus / as sysdba

3. Start the Oracle instance:

SQL> startup

4. Set the static WALLET_ROOT parameter, which allows you to designate the location of the keystore you
plan to use.

Note: You must set up the WALLET_ROOT parameter even if you do not use a keystore.

https://docs.oracle.com/en/database/oracle/oracle-database/19/asoag/configuring-transparent-data-encryption.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/asoag/configuring-transparent-data-encryption.html

INTEGRATION GUIDE| ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION

Page 18 of 25

SQL> ALTER SYSTEM SET WALLET_ROOT = '/opt/oracle/extapi/64/hsm/futurex/4.45/libfxpkcs11.so'
SCOPE=SPFILE;

5. Bounce the database after setting the WALLET_ROOT parameter by shutting it down and starting it back
up.

SQL> SHUTDOWN IMMEDIATE;

SQL> STARTUP;

6. Set the dynamic TDE_CONFIGURATION parameter that allows you to designate the type of keystore you
plan to use.

SQL> ALTER SYSTEM SET TDE_CONFIGURATION='KEYSTORE_CONFIGURATION=HSM' SCOPE=BOTH SID = '*';

7. Bounce the database after setting the TDE_CONFIGURATION parameter by shutting it down and starting
it back up.

SQL> SHUTDOWN IMMEDIATE;

SQL> STARTUP;

8. Open the hardware keystore using the password of the user created on the KMES:

SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "KMES_User_Password";

9. Create the TDE Master Encryption Key using the password of the user created on the KMES:

SQL> ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY "KMES_User_Password";

Note: If migrating a previously configured TDE Master Encryption Key, refer to this article.
10. If successful, the following message appears.

System altered.

Keys generated on the KMES Series 3 look like the following:

FIGURE: GENERATED KEYS IN THE KMES SERIES 3

Note: If the database contains columns encrypted with a public key, the columns are decrypted and re-
encrypted with the Oracle table key, which is encrypted/decrypted with the AES symmetric key generated by
HSM-based transparent data encryption.

https://docs.oracle.com/en/database/oracle/oracle-database/19/asoag/managing-keystore-and-tde-master-encryption-key.html#GUID-4335220F-49FF-40BC-9EB0-21442608F436

INTEGRATION GUIDE| ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION

Page 19 of 25

[7.2] DOCKER CONTAINER IMPLEMENTATION
The steps outlined in this section are specific to how you must configure the Futurex PKCS #11 (FXPKCS11)
library to work with an Oracle Database Docker container. For instructions on how to build and run Oracle
Database in a Docker container, please refer to Oracle's documentation.

1. On the host computer that will be running the Oracle Database container, open a terminal and navigate
to the location where the Oracle Database private key (tls_skey.pem) is saved.

2. Run the following command to make the Oracle Database private key readable and executable for all
users:

$ chmod 555 tls_skey.pem

3. Set the OpenSSL version to match your container in the OPENSSL_VERSION environment variable. If
running Oracle Database 19c using the official Oracle Database container images repository on GitHub
(https://github.com/oracle/docker-images/blob/main/OracleDatabase), you need to run the following
command because that container image is based on Oracle Linux 7, which is OpenSSL 1.0-based:

$ OPENSSL_VERSION=OpenSSL-1.0.x

If your Oracle Database runs in a container based on OpenSSL 1.1, run the following command:

$ OPENSSL_VERSION=OpenSSL-1.1.x

4. Download the Futurex PKCS #11 (FXPKCS11) library from the Futurex Portal. If your container is based on
OpenSSL 1.0, download the fxpkcs11-redhat-4.xx-xxxx.tar file. If your container is based on OpenSSL 1.1,
download the fxpkcs11-redhat8-4.xx-xxxx.tar file.

5. Extract the FXPKCS11 library and save the version in the PKCS_VERSION environment variable.

$ tar -xvf fxpkcs11*.tar
$ PKCS_VERSION=$(grep -r --include=*info* Version: | awk 'NR==2{print $2}')

6. Edit the fxpkcs11.cfg file to allow the FXPKCS11 library to connect to the KMES Series 3. Set the fields
shown below inside the <KMS> section:

<KMS>
Which PKCS11 slot
<SLOT> 0 </SLOT>
<LABEL> Futurex </LABEL>

HSM crypto operator user name
<CRYPTO-OPR> Crypto1 </CRYPTO-OPR>

Key group name
<KEYGROUP-NAME> OracleTDE </KEYGROUP-NAME>

Connection information
<ADDRESS> 10.0.8.30 </ADDRESS>
<PROD-PORT> 2001 </PROD-PORT>
<PROD-TLS-ENABLED> YES </PROD-TLS-ENABLED>
<PROD-TLS-ANONYMOUS> NO </PROD-TLS-ANONYMOUS>
<PROD-TLS-CA> /home/oracle/pki/tls_ca.pem </PROD-TLS-CA>
<PROD-TLS-CERT> /home/oracle/pki/tls_cert.pem </PROD-TLS-CERT>

https://github.com/oracle/docker-images/blob/main/OracleDatabase

INTEGRATION GUIDE| ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION

Page 20 of 25

<PROD-TLS-KEY> /home/oracle/pki/tls_skey.pem </PROD-TLS-KEY>
#<PROD-TLS-KEY-PASS> safest </PROD-TLS-KEY-PASS>

YES = This is communicating through a Guardian
<FX-LOAD-BALANCE> NO </FX-LOAD-BALANCE>

</KMS>

The <SLOT> and <LABEL> fields specify PKCS11 slot 0 and the label Futurex.

In the <CRYPTO-OPR> field, specify the name of the user you created on the KMES.

In the <KEYGROUP-NAME> field, specify the name of the key group that you created on the KMES.

In the <ADDRESS> field, specify the IP address of the KMES that the FXPKCS11 library should connect to.

In the <PROD-PORT> field, specify port 2001, which is the System/Host API port on the KMES.

The <PROD-TLS-ENABLED> field should be set to YES.

The <PROD-TLS-ANONYMOUS> field should be set to NO.

In the <PROD-TLS-CA> field, specify the path to where the tls_ca.pem file is saved.

In the <PROD-TLS-CERT> field, specify the path to where the tls_cert.pem file is saved.

In the <PROD-TLS-KEY> field, specify the path to where the tls_skey.pem file is saved.

The <PROD-TLS-KEY-PASS> field should remain commented out because a password was not set for the
client private key.

Set <FX-LOAD-BALANCE>to the default value NO.

7. Run the following command to start the Oracle Database container and bind-mount all of the FXPKCS11
files needed for FXPKCS11 to be able to connect to the KMES Series 3.

Note: This command needs to be run from the same directory where the extracted fxpkcs11 directory is
stored.

Note: If the TLS certificates for authentication with the KMES Series 3 are not stored in the
/home/oracle/pki directory on your system, modify the third -v flag in your command to reflect this.

$ docker run -d \
-v $(pwd)/fxpkcs11.cfg:/etc/fxpkcs11.cfg \
-v $(pwd)/fxpkcs11/x64/${OPENSSL_VERSION}/lib-

fxpkcs11.so:/opt/oracle/extapi/64/hsm/futurex/${PKCS_VERSION}/libfxpkcs11.so \
-v /home/oracle/pki:/pki \
-p 1521:1521 \
-p 5500:5500 \
-e ORACLE_SID=test \
-e ORACLE_PWD=Password123 \
-v data:/opt/oracle/oradata \
--name TDE \
oracle/database:19.3.0-ee

Note: The above command takes 10 to 20 minutes to complete, depending on your system's
resources.You must run this command from the same directory with the extracted fxpkcs11 directory.

INTEGRATION GUIDE| ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION

Page 21 of 25

8. Once the Oracle Database container is running, run the following command to connect to the container's
file system:

$ docker exec -it TDE /bin/bash

9. Modify the /opt/oracle/product/19c/dbhome_1/network/admin/sqlnet.ora file to the following, then
save:

NAME.DIRECTORY_PATH= (TNSNAMES, EZCONNECT, HOSTNAME)
WALLET_LOCATION=(SOURCE=(METHOD=HSM)(METHOD_DATA=(DIRECTORY=/opt/oracle/admin/wallet)))
ENCRYPTION_WALLET_LOCATION=(SOURCE=(METHOD=HSM)(METHOD_DATA=(DIRECTORY-
Y=/opt/oracle/admin/wallet)))
WALLET_ROOT=/opt/oracle/admin/wallet

10. Connect to the database.

$ sqlplus sys/Password123@test as sysdba

11. Create the Master Encryption Key for TDE.

SQL > ALTER SYSTEM SET ENCRYPTION KEY IDENTIFIED BY "safest";

12. Upon success, the following message appears:

System altered.

INTEGRATION GUIDE| ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION

Page 22 of 25

[8] OPENING THE WALLET/HARDWARE KEYSTORE
The security administrator must make the KMES Series 3 accessible to the database before Oracle TDE can
perform any encryption or decryption. This is comparable to opening the Oracle wallet or logging in to the
hardware keystore. The wallet/hardware keystore can be opened manually or automatically, but with the
manual option, you must re-enable access to the KMES every time the database is restarted. Both methods are
described below.

[8.1] MANUAL OPTION
Run the following command to open the hardware keystore manually, thus making the KMES accessible:

SQL> ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY "KMES_User_Password";

You can disable access with the following command.

SQL> ALTER SYSTEM SET ENCRYPTION WALLET CLOSE IDENTIFIED BY "KMES_User_Password";

Note: You must re-enable access to the KMES every time you restart the database instance, if using the manual
option.

[8.2] AUTOMATIC OPTION
Note: An auto-login wallet stores the KMES credentials in an auto-login software keystore. This configuration
reduces the security of the system as a whole; however, this configuration supports unmanned or automated
operations, and is useful in deployments where automatic re-login to the KMES is necessary.

1. Create the /etc/ORACLE/WALLETS/tde directory path using the mkdir command below:

$ sudo mkdir -p /etc/ORACLE/WALLETS/tde

2. Change ownership of the /etc/ORACLE directory to the oracle user.

$ chown -R oracle:oinstall /etc/ORACLE

3. Set the WALLET_ROOT parameter the WALLETS directory created in the first step.

SQL> ALTER SYSTEM SET WALLET_ROOT = '/etc/ORACLE/WALLETS' SCOPE=SPFILE;

4. Set the TDE_CONFIGURATION parameter to FILE for the KEYSTORE_CONFIGURATION.

SQL> ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE" SCOPE=SPFILE;

5. Bounce the database after setting the WALLET_ROOT and TDE_CONFIGURATION parameters by shutting
it down and starting it back up.

SQL> SHUTDOWN IMMEDIATE;

SQL> STARTUP;

6. If you have not migrated from a software keystore, create the software keystore with the hardware
keystore password in the appropriate location (e.g., /etc/ORACLE/WALLETS/tde).

INTEGRATION GUIDE| ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION

Page 23 of 25

SQL> ADMINISTER KEY MANAGEMENT CREATE KEYSTORE IDENTIFIED BY "Software_Keystore_Password";

Note: The Software_Keystore_Password value can be any password you choose.

7. Open the new software keystore with the following command:

SQL> ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "Software_Keystore_Password";

8. Add the secret to the software keystore. The secret is the KMES user password and client is HSM_
PASSWORD. HSM_PASSWORD is an Oracle-defined client name that represents the HSM password as a
secret in the software keystore.

SQL> ADMINISTER KEY MANAGEMENT ADD SECRET 'KMES_User_Password' FOR CLIENT 'HSM_PASSWORD'
IDENTIFIED BY "Software_Keystore_Password" WITH BACKUP;

Note: You must provide the secret and HSM_PASSWORD values within single quotes or the command will
fail.

9. Create a new auto-login keystore using the password of the Oracle software wallet.

SQL> ADMINISTER KEY MANAGEMENT CREATE AUTO_LOGIN KEYSTORE FROM KEYSTORE IDENTIFIED BY "Software_
Keystore_Password";

10. Re-set the TDE_CONFIGURATION parameter to HSM|FILE for the KEYSTORE_CONFIGURATION.

SQL> ALTER SYSTEM SET TDE_CONFIGURATION = 'KEYSTORE_CONFIGURATION=HSM|FILE' SCOPE=SPFILE;

11. Bounce the database after setting the TDE_CONFIGURATION parameter by shutting it down and starting
it back up.

SQL> SHUTDOWN IMMEDIATE;

SQL> STARTUP;

12. At this stage, the hardware security module auto-login keystore opens automatically the next time a TDE
operation executes. To confirm that the auto-login wallet is working, run the following query:

SQL> SELECT WRL_TYPE, WRL_PARAMETER, WALLET_TYPE, STATUS FROM V$ENCRYPTION_WALLET;

If the auto-login wallet was configured properly, the following output appears:

WRL_TYPE

WRL_PARAMETER
--
WALLET_TYPE STATUS
-------------------- ------------------------------
FILE
/etc/ORACLE/WALLETS/tde/
AUTOLOGIN OPEN_NO_MASTER_KEY

HSM

HSM OPEN

INTEGRATION GUIDE| ORACLE DATABASE 19C TRANSPARENT DATA ENCRYPTION

Page 24 of 25

APPENDIX A: XCEPTIONAL SUPPORT

In today’s high-paced environment, we know you are looking for timely and effective resolutions for your
mission-critical needs. That is why our Xceptional Support Team does whatever it takes to ensure you have the
best experience and support possible. Every time. Guaranteed.

l 24x7x365 mission critical support
l Level 1 to level 3 support
l Extremely knowledgeable subject matter experts

At Futurex, we strive to supply you with the latest data encryption innovations as well as our best-in-class
support services. Our Xceptional Support Team goes above and beyond to meet your needs and provide you
with exclusive services that you cannot find anywhere else in the industry.

l Technical Services
l Onsite Training
l Virtual Training
l Customized Consulting
l Customized Software Solutions
l Secure Key Generation, Printing, and Mailing
l Remote Key Injection
l Certificate Authority Services

Toll-Free: 1-800-251-5112

E-mail: support@futurex.com

mailto:support@futurex.com

ENGINEERING CAMPUS

864 Old Boerne Road

Bulverde, Texas, USA 78163

Phone: +1 830-980-9782

+1 830-438-8782

E-mail: info@futurex.com

XCEPTIONAL SUPPORT

24x7x365

Toll-Free: 1-800-251-5112

E-mail: support@futurex.com

SOLUTIONS ARCHITECT

E-mail: solutions@futurex.com

mailto:info@futurex.com
mailto:support@futurex.com
mailto:solutions@futurex.com

	[1] Document Information
	[1.1] DOCUMENT OVERVIEW

	[2] Oracle Database 19c Transparent Data Encryption (TDE) Integration Overview
	[3] Prerequisites
	[4] Configuring the Futurex PKCS #11 library in Oracle
	[4.1] COPY THE FUTUREX PKCS #11 LIBRARY TO THE required PATH

	[5] KMES Series 3 Configuration
	[5.1] Crypto Operator Group and Users
	[5.2] Create the Key Group for Oracle TDE Keys
	[5.3] Enable the Host API commands required for the Oracle TDE operation
	[5.4] Configure TLS communication between the KMES Series 3 and the Oracle Database Instance

	[6] Edit the Futurex PKCS #11 Configuration File
	[7] Generate a TDE Master Encryption Key on the KMES Series 3
	[7.1] Standard Implementation
	[7.2] Docker container implementation

	[8] Opening the Wallet/hardware keystore
	[8.1] Manual Option
	[8.2] Automatic Option

	APPENDIX A: XCEPTIONAL SUPPORT

